A Argumentação e a Experimentação Investigativa no Ensino de Matemática

Argumentation and Investigative Experimentation in Teaching Mathematics

Willa Nayana Corrêa Almeida; João Manoel da Silva Malheiro

a Instituto de Educação Matemática e Científica, Universidade Federal do Pará, Belém, Brasil – willa.almeida@hotmail.com, joaomalheiro@ufpa.br

Resumo: O presente estudo teve início a partir da reflexão de nossa prática, em que buscamos analisar as contribuições das intervenções da professora-monitora para o surgimento e desenvolvimento da argumentação entre discentes participantes de um clube de ciências, durante uma atividade experimental investigativa sobre os conceitos introdutórios de área e perímetro. A pesquisa se caracteriza como qualitativa, sendo utilizada a Análise de Conteúdo para interpretação das informações levantadas a partir de videogravações. Participaram como sujeitos sete discentes. O espaço investigado é considerado um ambiente alternativo destinado ao ensino, pesquisa e extensão de ações didáticas voltadas às Ciências e Matemáticas. Durante as análises realizadas percebemos que nossas intervenções como professora-monitora auxiliaram no surgimento da argumentação e na construção do conhecimento matemático. Verificamos que surgiram organismos argumentativos completos de acordo com o padrão de Toulmin, assim como diversas formas de ação e pensamento.

Keywords: Argumentation in mathematics teaching. Investigative experimentation. Science club.

Abstract: The present study started from the reflection of our own practice, in which we sought to analyze the contributions of the interventions of the teacher-monitor for the emergence and development of the argumentation among students participating in a Science Club, during an investigative experimental activity on the introductory concepts of area and perimeter. The research is characterized as qualitative, using Content Analysis to interpret the information gathered from video recordings. Seven students participated as subjects. The space investigated is considered an alternative environment destined to the teaching, research and extension of didactic actions directed to Sciences and Mathematics. During the analyzes we realized that our interventions as teacher-monitor helped in the emergence of argumentation and in the construction of mathematical knowledge. We have found that complete argumentative organisms have emerged according to the Toulmin pattern, as well as various forms of action and thought.

Esta obra foi licenciada com uma Licença Creative Commons Atribuição 4.0 Internacional
Introdução

O presente estudo emergiu a partir da reflexão de experiências pessoais e profissionais na sala de aula, sendo que essas vivências contribuem para a constituição de nossa identidade como docente de Matemática. Desta maneira, apoiados nesse processo reflexivo de investigação da própria prática e na colaboração teórica de autores diversos, procuramos discorrer sobre as intervenções que o professor pode exercer para promover a argumentação em sala de aula (ALMEIDA, 2017).

Tradicionalmente, as aulas de Matemática se resumem à aplicação e sistematização de conhecimentos por meio de uma comunicação unidirecional do professor e/ou dos livros de texto para os alunos, bem como no treino exorbitante de definições, técnicas e demonstrações gerando uma atividade rotineira e mecânica (MALHEIRO, 2005; BOAVIDA et al., 2008).

Nesse processo educacional engessado, os saberes e/ou dúvidas dos alunos não têm voz nem vez, já que as interações discursivas e argumentativas só acontecem em momentos avaliativos com o intuito de gerar notas que não representam a real aprendizagem dos discentes (BOAVIDA et al., 2008).

Morin (2004) coloca que o ensino de Matemática deve ser levado aquém e além do cálculo servindo como um instrumento do raciocínio, fazendo-se necessário um diálogo entre o pensamento matemático e o desenvolvimento dos saberes científicos. Contudo, alguns professores fazem uso de métodos que promovem a assimilação de um conhecimento já pronto, desconsiderando etapas que proporcionem momentos de investigação, experimentação e comunicação de ideias (D’AMBROSIO et al., 2014).

No ensino de Geometria essa situação não se diferencia, pois apesar de seu importante papel na aprendizagem da matemática aplicada e cotidiana, esta área de estudo, por diversas razões, não tem ocupado o seu devido lugar no ensino (LORENZATO, 2010).

Destarte, o educador deve promover momentos de problematização em sala de aula, propondo tarefas e desafios que incitem os alunos a mobilizarem seus conhecimentos. Isso implica em um ensino ativo no qual o docente percebe-se como sujeito que organiza situações didáticas envolvendo seus alunos para gerar novas aprendizagens (MALHEIRO, 2005, 2016; MALHEIRO; FERNANDES, 2015).

Nesse sentido, metodologias ativas de aprendizagem, em especial a experimentação investigativa (CARVALHO et al., 2009; CARVALHO, 2013) assumem um papel de destaque como método de ensino que desperta o interesse do discente (LABURÚ, 2006), e favorece a aprendizagem com significado (LORENZATO, 2010).

Nessa perspectiva, o Clube de Ciências “Prof. Dr. Cristovam W. P. Diniz” da Universidade Federal do Pará (UFPA) - Campus Castanhal, surge como um ambiente educacional de Ciências e Matemática que busca promover um ensino significativo. Para isso,
adota uma proposta pedagógica construtivista e interdisciplinar, utilizando metodologias ativas de aprendizagem (MALHEIRO, 2016).

Os educadores que acompanham e desenvolvem as ações pedagógicas com os alunos são voluntários, que denominamos de professores-monitor, sendo eles licenciados ou em formação inicial em cursos de Pedagogia ou Licenciaturas diversas, como Ciências Naturais, Biologia, Física, Química, Matemática e Informática (MALHEIRO, 2016).

O ensino investigativo proposto nesse espaço favorece a construção e explicitação de ideias pelos discentes, promovendo o surgimento da argumentação (CARVALHO, 2013; SASSERON, 2013). Esta pode ser concebida como todo processo (oral, escrito ou gestual) que relaciona evidências e dados teóricos ou empíricos, permitindo o estabelecimento de uma conclusão, que podem estar associados a justificativas e refutações que alicercem e fortaleçam as alegações levantadas (TOULMIN, 2001).

Desta maneira, de acordo com os propósitos e ações do educador para promover a argumentação em sala de aula (SASSERON, 2013), os estudantes podem apresentar uma estrutura padrão em seus argumentos (TOULMIN, 2001), bem como operações epistemológicas que qualificam o processo argumentativo (JIMÉNEZ-ALEIXANDRE et al., 2000).

Diante do exposto, a presente investigação busca analisar as contribuições das intervenções da professora-monitora para o surgimento e desenvolvimento da argumentação entre discentes participantes de um clube de ciências, durante uma atividade experimental sobre os conceitos introdutórios de área e perímetro.

A argumentação em sala de aula

Muitos são os estudos concernentes à argumentação na educação, que destacam a importância do aprimoramento da habilidade argumentativa dos estudantes, buscando a melhoria nas aprendizagens e uma formação crítica (BOAVIDA, 2005; LEITÃO, 2007; SASSERON; CARVALHO, 2011; SASSERON, 2013). Sobre isso, os Parâmetros Curriculares Nacionais de Matemática defendem a importância de uma constituição cidadã contemporânea, em que os alunos devem ser estimulados a construir e analisar diferentes processos de resolução de situações-problema, buscando argumentos plausíveis para solucioná-los (BRASIL, 1998).

Boavida (2005) coloca que ao mobilizar raciocínios, linguagens, símbolos e imagens, o processo argumentativo põe em jogo relações entre pessoas, estimula estratégias e processos de persuasão, situando-se num contexto social, científico, econômico, político e ideológico.

Para a autora, a construção de uma cultura argumentativa em sala de aula requer que o educador envolva os alunos em atividades que explorem a fundamentação de raciocínios, a
descoberta do porquê de determinados resultados ou situações, a resolução de desacordos através de explicações e justificações convincentes e válidas de um ponto de vista matemático.

Sasseron (2013) entende a argumentação como um processo de construção e explicitação de ideias, que acontece por meio da análise de dados, evidências e variáveis para o estabelecimento de uma afirmação ou conclusão, que podem estar associadas a justificativas e/ou refutações.

A pesquisadora assume que para que os argumentos realmente surjam em sala de aula, é necessário que o professor promova situações de investigação por meio da resolução de problemas que favoreçam a análise de dados e evidências. Tal exploração possibilita o reconhecimento de variáveis, bem como o estabelecimento daquelas que são relevantes. Permite, ainda, o estudo de hipóteses que favorecerá a avaliação do que se investiga.

Para Leitão (2007) a argumentação adquire papel de mediadora na construção dos saberes e a promoção do pensamento crítico-reflexivo, pois desencadeia nos estudantes um tipo de experiência cognitiva que lhes possibilita tomar consciência e agir sobre o conhecimento.

Diante das contribuições teóricas apresentadas, entendemos que o uso da argumentação favorece a construção do conhecimento, contribuindo para a formação crítica e cidadã dos estudantes, sendo necessário que o professor promova situações para que o processo argumentativo realmente aconteça. Desta forma, optamos como fio condutor para nossas análises as ideias de Toulmin (2001), que serão expostas a seguir.

O padrão de argumento de Stephen Toulmin: um modelo de análise

Stephen Toulmin (2001), procura estabelecer a validade de um raciocínio por meio da interpretação estrutural de argumentos. Sendo que, ao examinar a forma da argumentação do cotidiano de diferentes áreas (tais como direito, política, ciência, etc.), o filósofo compara um argumento à um organismo que possui “uma estrutura bruta, anatômica, e outra mais fina e, por assim dizer, fisiológica” (TOULMIN, 2001, p. 135).

Ao centralizar sua investigação nessa estrutura fisiológica, Toulmin (2001) delimita as funções de determinados tipos de proposições em um padrão, especificando o lugar lógico dos elementos que irão compor um argumento considerado válido. Com isso, o pesquisador propõe um layout ou modelo padronizado para a análise argumentativa a partir de componentes lógicos, que pode se apresentar no formato básico ou completo.

Em sua estrutura básica, o padrão de Toulmin (2001) apresenta os seguintes elementos:
• Dados (D): São os fatos e informações aos quais recorremos como fundamentos para a conclusão encontrada.

• Conclusão ou alegação (C): É uma ideia a ser estabelecida.

• Garantias (W): São afirmações que, no processo de justificação, garantem a relação entre os dados e a conclusão apresentada, já que somente os fatos não bastam para validar uma alegação. Essas proposições podem ser regras, princípios ou exemplos.

Contudo, estes três elementos podem não ser suficientes para analisar um argumento, já que nem sempre as garantias e os dados permitem inferir a conclusão com o mesmo grau de força. Desta forma, o modelo necessita de mais alguns termos constituintes, passando a ser mais complexo. Esses outros elementos são:

• Qualificador modal (Q): É uma referência explícita ao grau de confiança que os dados conferem à conclusão em virtude da existência da garantia, ou seja, indica a força que a garantia empresta à conclusão, apresentando-se, de maneira geral, por meio de um advérbio.

• Condições de exceção ou refutação (R): Mostra as situações nas quais a autoridade da garantia não tem validade, contestando as suposições criadas.

• Conhecimento básico ou apoio (B): São fatos adicionais, explícitos ou não, com o objetivo de legitimar, defender e auxiliar na validação ou refutação de uma garantia, fazendo uma referência categórica baseada em um conhecimento básico, uma lei ou uma autoridade.

Desta maneira, o padrão completo proposto por Toulmin (2001) para analisar a microestrutura de um argumento assume o aspecto apresentado na Figura 1 a seguir:

![Figura 1 - Padrão de argumento completo proposto por Toulmin](image)

Fonte: Adaptado de Toulmin (2001, p. 150)

Enfatizamos que apesar do padrão de Toulmin não se tratar especificamente do campo educacional, ele mostra-se útil para a análise e compreensão da argumentação em sala de aula, tendo como foco a observação da coesão e consistência do argumento a partir de sua estrutura e seus elementos lógicos constitutivos.

1 W – Inicial da palavra original em inglês Warranty, que significa Garantia.
2 B – Inicial da palavra original em inglês Backing, que significa Apoio.

Sendo assim, defendemos que o padrão argumentativo de Toulmin contribui para a estruturação do argumento, e será utilizado como referencial de análise dos argumentos produzidos durante a aplicação da atividade experimental investigativa em um clube de ciências.

Outro instrumento que utilizaremos para analisar o desenvolvimento argumentativo em nossa proposta metodológica, são alguns propósitos e ações do professor para favorecer a argumentação em sala de aula, que serão explanados no tópico a seguir.

Propósitos e ações do educador para promover a argumentação

O processo de argumentação durante as aulas possui finalidades delimitadas, que emergem da interação professor-alunos-conhecimentos. Sendo que, para se atingir tais objetivos, alguns propósitos e ações precisam ser realizadas pelo docente de forma “a possibilitar que os estudantes trabalhem na construção de entendimento sobre temas debatidos em sala de aula” (SASSERON; CARVALHO, 2013, p. 176).

Sobre essa temática, Sasseron (2013) afirma que existem dois grandes aspectos da atuação do professor que promovem o surgimento de argumentos em sala de aula: os pedagógicos e epistemológicos. Segundo a autora, ambas as dimensões devem acontecer simultaneamente para que as interações entre estudantes e professor ocorram.

Os propósitos pedagógicos estão relacionados ao desenvolvimento de intervenções em sala de aula que contribuem para a organização no espaço e do tempo de uma atividade educacional proposta. Essas intenções auxiliam no desenvolvimento da argumentação por estarem associados à criação de possibilidades para que os estudantes realizem investigações, interajam discursivamente e divulguem suas ideias.

Os propósitos pedagógicos e suas respectivas ações são apresentados no Quadro 1:
Quadro 1 - Propósitos e ações pedagógicos do educador para promover argumentação

<table>
<thead>
<tr>
<th>Propósitos Pedagógicos</th>
<th>Ações Pedagógicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planejamento da atividade</td>
<td>Definição dos objetivos, organização de materiais necessários e préparação do cronograma.</td>
</tr>
<tr>
<td>Organização da atividade</td>
<td>Divisão de grupos e/ou tarefas, organização do espaço, distribuição de materiais, limite de tempo.</td>
</tr>
<tr>
<td>Ações disciplinares</td>
<td>Proposição clara das atividades e das ações a serem realizadas, atenção ao trabalho dos alunos, ações disciplinares.</td>
</tr>
<tr>
<td>Motivação</td>
<td>Estímulo à participação, acolhida das ideias dos alunos.</td>
</tr>
</tbody>
</table>

Fonte: Adaptado de Sasseron (2013, p. 48)

Outro conjunto de propósitos e ações do professor são aqueles associados à constituição do conhecimento. Sasseron (2013) assevera que essas intenções epistemológicas estão intrinsecamente ligadas à construção de um argumento fundamentado cientificamente.

As relações epistemológicas são apresentadas no Quadro 2 a seguir:

Quadro 2 - Propósitos e ações epistemológicos do educador para promover argumentação

<table>
<thead>
<tr>
<th>Propósitos Epistemológicos</th>
<th>Ações Epistemológicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retomada de ideias já discutidas</td>
<td>Referência a ideias previamente trabalhadas e/ou experiências prévias dos alunos.</td>
</tr>
<tr>
<td>Proposição de problema</td>
<td>Problematização de uma situação.</td>
</tr>
<tr>
<td>Teste de ideias</td>
<td>Reconhecimento e teste de hipóteses.</td>
</tr>
<tr>
<td>Delimitação de condições</td>
<td>Descrição, nomeação e caracterização do fenômeno e/ou objetos.</td>
</tr>
<tr>
<td>Reconhecimento de variáveis</td>
<td>Delimitação e explicitação de variáveis.</td>
</tr>
<tr>
<td>Correlação de variáveis</td>
<td>Construção de relação entre variáveis, construção de explicações.</td>
</tr>
<tr>
<td>Avaliação de ideias</td>
<td>Estabelecimento de justificativas e refutações.</td>
</tr>
</tbody>
</table>

Fonte: Adaptado de Sasseron (2013, p. 50)

Assim como o professor deve oferecer condições para o surgimento de argumentos em sala de aula, os alunos também devem apresentar intenções e ações para que ocorra o desenvolvimento da argumentação. Sobre essas atitudes, apresentamos a seguir um conjunto de operações epistemológicas propostas por Jiménez-Aleixandre et al. (2000).

Operações epistemológicas apresentadas pelos estudantes no desenvolvimento da argumentação

Jiménez-Aleixandre et al. (2000) analisaram a capacidade dos alunos para desenvolverem argumentos durante a resolução de problemas em sala de aula, procurando diferenciar momentos em que os estudantes faziam e falavam sobre os conteúdos científicos, daqueles em que apenas resolviam as tarefas propostas.
Neste estudo, os autores apresentam uma ferramenta de análise dos argumentos que utiliza o Padrão Argumentativo de Toulmin, para verificar as relações estabelecidas entre as estruturas existentes no modelo e as diversas formas de ação e pensamento apresentadas pelos estudantes para a construção do conhecimento. Tais atitudes são denominadas de operações epistemológicas e estão especificadas no Quadro 3:

Quadro 3 - Operações epistemológicas apresentadas pelos estudantes no desenvolvimento da argumentação

<table>
<thead>
<tr>
<th>Tipo de Operação Epistemológica</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indução</td>
<td>O estudante procura por padrões ou regularidades.</td>
</tr>
<tr>
<td>Dedução</td>
<td>Identificação de exemplos particulares de leis ou regras.</td>
</tr>
<tr>
<td>Causalidade</td>
<td>Relação causa-efeito, procura por mecanismos de confirmação do conhecimento.</td>
</tr>
<tr>
<td>Definição</td>
<td>Manifestação de entendimento de um conceito.</td>
</tr>
<tr>
<td>Classificação</td>
<td>Agrupamento de objetos e organismos de acordo com critérios.</td>
</tr>
<tr>
<td>Apelo a: - Analogias</td>
<td>Faz-se apelo a analogias, exemplos ou atributos como uma forma de explicação. Usa-se ainda o apelo a uma autoridade, como, por exemplo, a fala do professor, uma ideia levantada em um texto ou um vídeo.</td>
</tr>
<tr>
<td>- Exemplos</td>
<td></td>
</tr>
<tr>
<td>- Atributos</td>
<td></td>
</tr>
<tr>
<td>- Autoridade</td>
<td></td>
</tr>
<tr>
<td>Consistência:</td>
<td>O estudante utiliza fatores que dão coerência e entendimento ao que está sendo discutido. Essa consistência pode surgir por meio de uma experiência, e/ou pelo uso de outros conhecimentos. Pode-se ainda buscar um compromisso de consistência com o que está sendo dito, ou observar o estado metafísico do objeto.</td>
</tr>
<tr>
<td>- Com outro conhecimento</td>
<td></td>
</tr>
<tr>
<td>- Com experiência</td>
<td></td>
</tr>
<tr>
<td>- Compromisso com consistência</td>
<td></td>
</tr>
<tr>
<td>- Metafísico</td>
<td></td>
</tr>
<tr>
<td>Plausibilidade</td>
<td>Afirmação ou avaliação de seu próprio conhecimento ou do conhecimento dos outros.</td>
</tr>
</tbody>
</table>

Fonte: Adaptado de Jiménez-Alexandre et al. (2000, p. 768, tradução nossa)

Os pesquisadores salientam que as operações epistemológicas favorecem a condução da argumentação e proporcionam coerência às ideias expostas e defendidas. É enfatizada ainda a necessidade de o educador criar um ambiente adequado em sala de aula que leve os estudantes a investigar e resolver problemas de maneira colaborativa, o que propicia a aprendizagem e o desenvolvimento de argumentos coerentes (JIMÉNEZ-ALEIXANDRE et al., 2000).

Acerca da necessidade de criação de um espaço investigativo que possa conduzir e mediar a aprendizagem, bem como favorecer a argumentação em sala de aula, apresentamos a seguir algumas discussões sobre experimentação e uma proposta de sequência de ensino baseada em atividades experimentais investigativas.

A Experimentação investigativa e o favorecimento da argumentação em sala de aula

Na escola, a experimentação é um processo que permite o aluno se envolver com o conteúdo em estudo, levantar hipóteses, procurar alternativas, avaliar resultados, bem como participar das descobertas e socializações com seus pares. Desta forma, as atividades experimentais possuem um caráter motivador, promovendo o raciocínio, a reflexão, a construção do conhecimento e uma melhor compreensão das etapas de ação das ciências (MALHEIRO, 2005, 2016; LABURÚ, 2006; LORENZATO, 2010).
Esse recurso pode ser organizado de muitas maneiras, desde estratégias que focalizam a simples ilustração ou verificação de leis, até aquelas que estimulam a criatividade dos alunos e proporcionam condições para refletirem e reverem suas ideias a respeito dos mais variados fenômenos (OLIVEIRA, 2010).

As atividades experimentais investigativas representam um método em que experimentos qualitativos são propostos como forma de investigar as relações e conceitos em foco. Os alunos ocupam uma posição mais ativa no processo de construção do conhecimento, assumindo um papel de maior participação nas etapas da investigação (MALHEIRO, 2016).

Segundo diversos autores (MALHEIRO, 2005, 2016; SUART; MARCONDES, 2008; CARVALHO et al., 2009; CARVALHO, 2013; MALHEIRO; FERNANDES, 2015), tais atividades devem surgir em virtude da problematização de um conteúdo. Assim, se uma aula experimental for organizada da forma a colocar o discente diante de um problema, “poderá contribuir para o aluno raciocinar logicamente sobre a situação e apresentar argumentos na tentativa de analisar os dados e apresentar uma conclusão plausível” (SUART e MARCONDES, 2008, p. 3).

Um aspecto importante a ser observado na modalidade investigativa é o papel do professor, em que este se torna uma figura-chave, pois leva os seus alunos a agirem de maneira autônoma e atuarem em cooperação. O educador pode ainda usar a experimentação como um instrumento de avaliação formativa, adotando o erro como base de construção do saber (CARVALHO et al., 2009).

Outra característica positiva do uso de experimentos está relacionada à argumentação, já que muitos são os autores que destacam a contribuição da experimentação investigativa para o desenvolvimento de argumentos em sala de aula, dentre eles podemos citar: Capecchi e Carvalho (2000), Gialazzi e Gonçalves (2004), Oliveira (2013), Sasseron (2013), entre outros.

Sasseron (2013) acrescenta que em uma atividade de investigação podem acontecer, simultaneamente, diversas interações entre as pessoas, entre as pessoas e os conhecimentos prévios, entre as pessoas e os objetos. A partir dessas relações, muitos momentos exigem a defesa, comunicação e explicitação de ideias, surgindo, assim, a argumentação.

Dentro deste contexto teórico, Carvalho et al. (2009) e Carvalho (2013) propõem Sequências de Ensino Investigativo (SEI) focadas em práticas experimentais de investigação voltadas para o ensino fundamental. Tais sequências visam proporcionar aos alunos, condições de trazer seus saberes prévios para iniciarem os novos, levantar suas próprias hipóteses e testá-las, favorecendo momentos para que essas ideias sejam discutidas em grupo e com orientação do professor, passando, assim, do conhecimento espontâneo ao científico.

Desta forma, Carvalho et al. (2009) apresentam uma metodologia construtivista de ensino, sendo dividida em sete etapas. Essas fases, que serão apresentadas no Quadro 4, irão
organizar e guiar o trabalho experimental investigativo, evidenciando o papel do educador e do aluno ao longo das atividades.

Quadro 4 - Etapas da experimentação investigativa

<table>
<thead>
<tr>
<th>Etapas</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- O professor propõe o problema</td>
<td>Inicialmente, o professor precisa dividir a turma em grupos de quatro ou cinco alunos para facilitar o diálogo entre os discentes e permitir que tenham oportunidade de manipular o material. Em seguida, o educador propõe o problema aos estudantes, apresentando e distribuindo o material experimental a ser utilizado na solução da situação problemática.</td>
</tr>
<tr>
<td>2- Agindo sobre os objetos para ver como eles reagem</td>
<td>Os alunos se debruçam sobre o material experimental para se familiarizar com os elementos e verificar como eles reagem. Ao professor cabe o papel de identificar se o problema proposto foi entendido pelos grupos, dando alguma assistência, caso seja necessário, sem nunca dar respostas prontas, pois os estudantes devem trabalhar autonomamente para solucionar a situação problemática.</td>
</tr>
<tr>
<td>3- Agindo sobre os objetos para obter o efeito desejado</td>
<td>Num segundo momento da manipulação, quando já estiverem habituados com o material, os estudantes passarão a agir para obter o efeito que corresponda à solução do problema. O educador deve passar pelos grupos pedindo-lhes que mostrem e contem o que estão fazendo, criando condições para que refaçam mentalmente suas ações e as verbalizem.</td>
</tr>
<tr>
<td>4- Tomando consciência de como foi produzido o efeito desejado</td>
<td>Esta etapa corresponde à passagem do trabalho manipulativo à ação intelectual. Depois que as equipes terminarem de resolver o problema, o professor deve recolher o material experimental. O ideal é um grande grupo, em círculo ou semicírculo. Em seguida, o educador deve pedir que os alunos contem como fizeram para resolver o problema, buscando sua participação, levando-os a tomar consciência do que fizeram. O docente deve estar atento à todas as colocações e descrições.</td>
</tr>
<tr>
<td>5- Dando explicações causais</td>
<td>Quando o professor percebe que todos já relataram como fizeram para resolver o problema, deve solicitar que os alunos expliquem os motivos da solução encontrada. Assim, é nesta fase que os discentes irão procurar uma justificativa para o fenômeno ou mesmo uma explicação causal, mostrando para todos uma argumentação científica sobre os conteúdos em foco.</td>
</tr>
<tr>
<td>6- Escrevendo e desenhando</td>
<td>Essa é a fase da sistematização individual do conhecimento, em que o educador solicita aos estudantes que escrevam e/ou façam um desenho sobre a experiência, podendo ser sugerido que contem o que fizeram, expliquem por que o fenômeno aconteceu e o que aprenderam com o experimento.</td>
</tr>
<tr>
<td>7- Relacionando atividade e cotidiano</td>
<td>Ésse é o momento que se ultrapassa a manipulação dos objetos e propõem-se atividades que levam à contextualização social do conhecimento e/ou aprofundamento do conteúdo abordado pela experimentação. Podem ser usados diversos tipos de estratégias e materiais didáticos como: pequenos vídeos, imagens, desenhos, textos de contextualização, apresentações em slides, jogos, simulações, entre outros.</td>
</tr>
</tbody>
</table>

Fonte: Adaptado de Carvalho et al. (2009)

Diante desses pressupostos, adotamos a experimentação investigativa como instrumento metodológico por entendermos que ela favorece o desenvolvimento da competência argumentativa, bem como a análise da estrutura e da qualidade dos argumentos apresentados pelos alunos.

O desenho metodológico da pesquisa

Assumimos uma abordagem metodológica qualitativa, de acordo com os pressupostos de Bogdan e Biklen (1994), que a concebem como um conjunto de “estratégias de
investigação que partilham determinadas características” (p. 16), constituindo-se, assim, como um processo de reflexão e análise da realidade observada (OLIVEIRA, 2014).

A constituição dos dados a serem analisados deu-se, essencialmente, por meio de videogravações, fotografias, gravações de áudio e notas de campo (CARVALHO, 2011).

Para interpretação das informações, optamos em utilizar a Análise de Conteúdo desenvolvida por Bardin (2011). Segundo a autora, essa abordagem tem por finalidade efetuar deduções lógicas e justificativas, referentes às mensagens tomadas em consideração.

Para melhor visualização e interpretação das falas e ações dos sujeitos, buscamos promover a transcrição dos dados levantados em um quadro em que são apresentados os turnos das falas, os discursos dos alunos e da professora-monitora, bem como uma breve análise das manifestações discursivas na qual evidenciamos os Propósitos da Educadora, elementos do Padrão Argumentativo de Toulmin e as Operações Epistemológicas apresentadas pelos estudantes.

Nesse sentido, buscamos transcrever em episódios, os momentos mais proeminentes em que se evidenciam a participação dos alunos ao promoverem o levantamento de hipóteses durante a resolução do problema experimental, a argumentação desenvolvida nas discussões, os tipos de perguntas promovidas pela professora-monitora, as sequências das explicações dos estudantes durante uma atividade, entre outras situações.

Os discentes participantes da investigação foram quatro alunos do quinto ano (Grupo 1) e três do sexto ano (Grupo 2), totalizando sete sujeitos, sendo todos de escolas públicas municipais ou estaduais, com idades variando de 10 a 14 anos.

Os sujeitos envolvidos nos diálogos serão identificados pela letra maiúscula A, acompanhada de números sequenciados para diferenciação de cada aluno (A1, A2, A3, A4, A5, A6 e A7). Já as falas da professora-monitora serão evidenciadas por Prof.

Ressalta-se que, ao realizarem a inscrição no Clube de Ciências, os pais ou responsáveis dos estudantes assinam o Termo de Consentimento Livre e Esclarecido (TCLE), autorizando a participação das crianças nas pesquisas realizadas nesse ambiente de ensino, liberando o uso das falas e das imagens (CARVALHO, 2011).

O Clube de Ciências “Prof. Dr. Cristovam W. P. Diniz”

A educação tem sido proclamada como uma das áreas-chave para se enfrentar os desafios gerados pela globalização, pelo avanço tecnológico e, consequentemente, a desmotivação dos estudantes pelos estudos. Nesse cenário, existe a necessidade de se transpor os muros das escolas para espaços não-formais de ensino (GOHN, 2001).

A partir dessa ótica, o Grupo de Estudo, Pesquisa e Extensão “FormAÇÃO de Professores de Ciências” idealizou e implementou o Clube de Ciências “Prof. Dr. Cristovam
W. P. Diniz” na Universidade Federal do Pará - Campus de Castanhal (MALHEIRO, 2016), na qual desenvolve atividades aos sábados, com cerca de 50 estudantes do Ensino Fundamental, mais especificamente 5º e 6º anos (4º e 5º séries), com idades entre 9 e 15 anos.

Os espaços físicos usados para a promoção das ações pedagógicas são salas de aula equipadas com cadeiras, quadro branco, ar condicionado, data show e computador, disponibilizados pela UFPA. Os materiais pedagógicos utilizados são de baixo custo e/ou reciclados, tais como garrafas plásticas, isopor, utensílios domésticos, papéis variados, baldes, bacias, canetas, lápis, etc., que são adquiridos pela coordenação do projeto e professores-monitor es.

Desta maneira, o Clube busca implementar um ambiente alternativo destinado para o ensino, pesquisa e extensão de ações didáticas voltadas às Ciências e Matemáticas, almejando a popularização da ciência, a iniciação científica infanto-juvenil e a formação inicial e continuada de professores, e assim, apresentar aos participantes novos paradigmas educacionais (MALHEIRO, 2016).

Para se alcançar os objetivos pretendidos, adota-se a Experimentação Investigativa como principal metodologia ativa utilizada. Assim, seguindo as etapas propostas por Carvalho et al. (2009), a cada dois sábados uma atividade experimental é desenvolvida. No primeiro dia de encontro, efetuam-se os seis primeiros passos de apresentação, resolução e discussão do problema, e o segundo sábado é dedicado à sétima e última etapa na qual é realizada a contextualização e a sistematização do conhecimento construído no decorrer do experimento (ver Quadro 4).

A atividade experimental investigativa: o problema das formas

A sequência de ensino desenvolvida seguiu as etapas da Experimentação Investigativa propostas por Carvalho et al. (2009) e Carvalho (2013), sendo composta de sete momentos específicos. Tal atividade foi adaptada de uma prática pedagógica apresentada por Cazzola (2008) e buscou problematizar os conceitos introdutórios de área e perímetro de figuras planas (DOLCE; POMPEO, 2013), explorando questões ligadas à maximização de áreas e minimização de perímetros (FIGUEIREDO, 1989; MORETO, 2013).

É importante salientar que, como buscávamos desenvolver a argumentação em um momento experimental específico, não procuramos explicitar as definições e fórmulas para o cálculo da área e do perímetro de cada uma das formas geométricas planas estudadas. Embora esse não fosse nosso objetivo, o professor poderia desenvolver esses conceitos em aulas subsequentes, utilizando o experimento para introduzir o conteúdo a ser estudado.

Como a proposta de ensino foi desenvolvida no Clube de Ciências “Prof. Dr. Cristovam W. P. Diniz”, aplicamos a atividade de acordo com sua programação. Desta
maneira, os estágios da Experimentação Investigativa apresentadas por Carvalho et al. (2009) e Carvalho (2013) aconteceram em dois sábados consecutivos, com duração de 2 horas e 30 minutos em cada momento.

Com o intuito de deixar a atividade experimental mais lúdica e próxima dos discentes, foi solicitado que eles nomeassem a Sequência de Ensino Investigativa aplicada, a qual foi denominada de “O Problema da Formas”, tendo suas etapas descritas a seguir:

- **Etapas I: O professor propõe o problema**

 Inicialmente dividimos os alunos em duas equipes considerando o seu nível de escolaridade. Em seguida, apresentamos e distribuímos os materiais a serem utilizados na resolução da situação problemática para cada grupo de alunos. Os objetos eram: 1- Bolinhas de gude/ petecas; 2- Bloquinhos de madeira unidos por um fio ou arame formando uma circunferência.

 Após a distribuição dos materiais, iniciamos a proposição da problemática a ser resolvida. Para isso, discutimos uma situação hipotética na qual os estudantes foram questionados se caso alguém decidisse criar uma nova cidade com um muro em volta dela, como elas achariam que deveria ser o formato dessa localidade. Em seguida, apresentamos o seguinte problema: *Entre todas as formas possíveis de uma cidade, qual o melhor formato para que ela possa ter mais casas com menos muros?*

 Para solucionar essa questão, os alunos teriam que construir com os bloquinhos de madeira (muros) várias formas geométricas planas, verificando em qual delas caberia mais bolinhas de gude (casas) em sua superfície, sem que ficassem alguma peteca sobreposta. Após essa manipulação dos materiais, eles chegariam à conclusão que o melhor formato seria o circular (CAZZOLA, 2008).

 A explicação matemática para esse experimento está relacionada com a Geometria Euclidiana, mais especificamente com o Teorema Isoperimétrico, também conhecido como Problema de Dido ou Problema da Cerca (FIGUEIREDO, 1989; MORETO, 2013). Essa proposição afirma que “dado um comprimento fixo, dentre todas as figuras planas, fechadas, convexas e de perímetro igual a esse comprimento, o círculo é a que possui maior área” (MORETO, 2013, p. 50).

 Desta maneira, por meio da experimentação, os alunos conseguiriam perceber e comprovar empiricamente essa propriedade da geometria euclidiana, entendendo que, para se obter o máximo de casas construídas (área) com o mínimo de muros (perímetro), a cidade deveria ter a forma arredondada (FIGUEIREDO, 1989; CAZZOLA, 2008; MORETO, 2013).

3 Na região do nordeste paraense, as bolinhas de gude também são conhecidas como “petecas”.
4 Esse material foi nomeado pelos estudantes de várias maneiras, entretanto, o mais usado foi o nome de “cercado”.

• **Etapa 2: Agindo sobre os objetos para ver como eles reagem**

Logo após a apresentação da questão problema, os estudantes rapidamente associaram os bloquinhos de madeira aos muros da cidade e as bolinhas de gude às casas em seu interior. Ao entender essa relação, cada grupo manipulou os objetos para resolver a pergunta proposta, identificando de que maneira cada elemento se comportava.

• **Etapa 3: Agindo sobre os objetos para obter o efeito desejado**

Após verificar como os materiais reagiam, os alunos entenderam que deveriam construir um muro com vários formatos para verificar qual delas caberia mais bolinhas de gude. Para isso, os grupos contavam e anotavam quantas petecas cabiam em cada figura. Assim, por meio da manipulação experimental, os estudantes chegaram à resposta da problemática, concluindo que o melhor formato era o circular. Como comprovação, ambos os grupos mostraram que caberiam no máximo 40 casas (bolinhas de gude) na cidade redonda.

• **Etapa 4: Tomando consciência de como foi produzido o efeito desejado**

Após a manipulação dos materiais e a solução da questão levantada, foi solicitado que cada estudante relatasse como fizeram para resolver o problema, descrevendo as ações tomadas.

• **Etapa 5: Dando explicações causais**

Ao percebermos que todos já haviam relatado o que e como fizeram para solucionar o problema, pedimos que os discentes explicassem o motivo do formato circular ser o melhor para se construir uma cidade. Com essa fase, tínhamos a intenção que os alunos discutissem e inferissem sobre a justificativa e/ou explicação causal da situação proposta, levando, assim, ao conceito matemático envolvido no experimento.

• **Etapa 6: Escrevendo e desenhando**

Essa correspondeu à última etapa do primeiro dia de encontro, na qual buscamos que os alunos explicitassem individualmente suas conclusões sobre o experimento. Vale ressaltar que, durante as etapas 2 e 3, os grupos fizeram anotações sobre as hipóteses levantadas dos formatos que a cidade poderia possuir.

Aliado a esses registros, foi solicitado que os alunos escrevessem e/ou desenhassem sobre a experiência. Em sua maioria, os estudantes optaram em ilustrar por meio figuras o experimento.

• **Etapa 7: Relacionando atividade e cotidiano**

Essa etapa aconteceu no segundo sábado de encontro, e correspondeu à fase sistematização do conhecimento e aproximação com a realidade. Para isso, utilizamos vários tipos de estratégias e recursos didáticos, tais como apresentações em slides, vídeos, imagens,
jogos e simulação de situações, buscando envolver ludicamente os alunos de maneira que participassem ativamente das investigações, discussões e exposição de suas ideias.

Análise dos dados

No primeiro dia de aplicação, realizamos algumas ações pedagógicas voltadas para o *planejamento e organização da atividade*, em que preparamos o espaço da sala, organizamos e conversamos com os discentes sobre o que seria realizado, bem como arrumamos as mesas e os materiais que seriam utilizados (SASSERON, 2013).

Em seguida, de acordo com Carvalho et al. (2009), iniciamos a etapa em que o *professor propõe o problema*. Para isso, buscamos apresentar os materiais a serem utilizados, sempre promovendo a *motivação* dos alunos por meio de questionamentos intrigantes que servissem de estímulo para análise dos objetos e solução da problemática proposta (SASSERON, 2013).

Na sequência, iniciaram-se as etapas *agindo sobre os objetos para ver como eles reagem e agindo sobre os objetos para obter o efeito desejado* (CARVALHO et al., 2009), que em nossa atividade, aconteceram simultaneamente.

Ao iniciar esse estágio, conforme coloca Carvalho et al. (2009), os discentes debruçaram-se sobre o material experimental enquanto procuramos observar os grupos, verificando se o problema proposto foi compreendido e ainda analisando se todos estavam tendo oportunidades de manipular os objetos, desenvolvendo, assim, algumas *ações disciplinares* e de *motivação* (SASSERON, 2013).

Ao manipular os materiais, ambos os grupos iniciaram experimentando intuitivamente o formato circular, conseguindo colocar o máximo de 40 petecas dentro do cercado. Como esta forma correspondia à solução do problema e o ideal seria que os estudantes tentassem várias hipóteses para chegar em sua resposta, realizamos algumas perguntas para direcioná-los com intuito que buscassem outras hipóteses de solução do problema.

Esses questionamentos são considerados por Sasserom (2013) como parte do propósito epistemológico *propozição de problema*, já que quando se deseja que a investigação proporcione resultados mais consolidados, tanto do ponto de vista do conhecimento em construção, quanto da argumentação, algumas questões menores podem ser feitas associando-as à problemática central.

A partir das perguntas realizadas, e depois de primeiramente experimentarem o formato de círculo, cada grupo tomou caminhos diferentes para encontrar a resposta da problemática colocada. Os alunos do 5º ano testaram variadas hipóteses de formatos para a cidade, tais como pingo de chuva, maçã, quadrado, triângulo e retângulo. Já os estudantes do 6º ano, fizeram os formatos de coração, quadrado, triângulo, pentágono e retângulo.
Para exemplificar a etapa, o Quadro 5 mostra o Episódio 1 em que o Grupo 2 testa a hipótese de que o quadrado poderia ser o melhor formato para a cidade.

Quadro 5 - Episódio 1 – Momento de teste da hipótese do formato quadrado pelo Grupo 2

<table>
<thead>
<tr>
<th>Turno</th>
<th>Discurso</th>
<th>Análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A7: Agora vamos fazer um quadrado.</td>
<td>Dados</td>
</tr>
<tr>
<td>2</td>
<td>A6: Deixa eu tentar fazer um quadrado aqui (começa a construir um quadrado com o cercado de madeira).</td>
<td>Garantia Dedução Definição</td>
</tr>
<tr>
<td>3</td>
<td>A7: Isso é um retângulo. Tem que ser um quadrado, tem que ter lados iguais.</td>
<td>Plausibilidade</td>
</tr>
<tr>
<td>4</td>
<td>A6: Tá... Pronto... Vamos colocar as petecas na mesma quantidade (Os alunos começam a colocar petecas até chegar em trinta e dois).</td>
<td>Qualificadora modal Plausibilidade Causalidade</td>
</tr>
<tr>
<td>5</td>
<td>A6: Está bom porque já está saindo do formato.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A7: Trinta e dois (anotando no papel o resultado obtido).</td>
<td>Dados Indução</td>
</tr>
<tr>
<td>7</td>
<td>A7: Espera... deixa ajeitar esse quadrado (manipula os lados do cercado para não desfazer o formato de quadrado).</td>
<td>Retomada de ideias já discutidas</td>
</tr>
<tr>
<td>8</td>
<td>Prof: Mas que formato é esse mesmo?</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>A7: Era para ser um quadrado.</td>
<td>Plausibilidade</td>
</tr>
<tr>
<td>10</td>
<td>A5: Mas só que ele desmontou quando colocamos as petecas.</td>
<td>Plausibilidade</td>
</tr>
<tr>
<td>11</td>
<td>A7: Espera... deixa ajeitar esse quadrado (manipula o cercado tentando formar novamente um quadrado).</td>
<td>Dados</td>
</tr>
<tr>
<td>12</td>
<td>Prof: Mas olhem que vocês estão forçando. Retirem um pouco e formem o quadrado certinho.</td>
<td>Delimitação de condições</td>
</tr>
<tr>
<td>13</td>
<td>A6: Mas está formado agora (mostra o quadrado que consegui montar).</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Prof: Eu não estou vendo um quadrado aí não.</td>
<td>Delimitação de condições</td>
</tr>
<tr>
<td>15</td>
<td>A5: Um quadrado tem que ter lados iguais e cantos retínhos... (começa a arrumar o quadrado). Pronto.</td>
<td>Garantia Apoio Definição</td>
</tr>
<tr>
<td>16</td>
<td>A6: Ficou um quadrado com as beirias boleadas por causa do cercado. Mas ficou quadrado.</td>
<td>Refutação Conclusão Apelo a atributos</td>
</tr>
<tr>
<td>17</td>
<td>Prof: Agora está. Mas como vocês vão continuar?</td>
<td>Motivação Proposição de problema</td>
</tr>
</tbody>
</table>

Fonte: Produzido com base nas informações constituídas durante a pesquisa

Nesse episódio 1, o grupo inicia o teste de uma nova hipótese de solução da problemática, para isso A7 expressa sua vontade de testar um novo formato.

No turno 3, o estudante observa as características do tamanho dos lados da figura que estava sendo feito e deduz que o mesmo era de um retângulo, acrescentando que um quadrado deveria ter lados iguais. Com isso, o aluno desenvolve as operações epistemológicas de
dedução, em que identifica características particulares para se encontrar um conceito, e definição, na qual busca explicitar uma regra matemática (JIMÉNEZ-ALEIXANDRE et al., 2000).

No turno seguinte, A6 observa e avalia o formato produzido, afirmando que a quantidade de petecas deveria ser a mesma. Logo, o aluno desenvolveu a plausibilidade (JIMÉNEZ-ALEIXANDRE et al., 2000).

Após construírem a forma desejada e verificarem quantas bolinhas de gude cabiam dentro dela, os estudantes perceberam que as petecas estavam forçando os lados do cercado, fazendo com que o quadrado se desfizesse. Com isso, o discente A6 desenvolveu as operações epistemológicas plausibilidade e causalidade, pois avaliou e concluiu que se a quantidade de objetos dentro do cercado aumentasse, o formato não se manteria.

Já no turno 7, A7 procura organizar o cercado para que mantenha o padrão quadrado, demonstrando usar a indução como operação de estruturação do seu pensamento e ação (JIMÉNEZ-ALEIXANDRE et al., 2000).

Neste momento, perguntamos aos alunos sobre qual formato estava sendo feito, com o intuito de verificar e relembrar as ideias anteriormente debatidas, desenvolvendo o propósito epistemológico de retomada de ideias já discutidas (SASSERON, 2013).

Para responder o questionamento feito, nos turnos 9 e 10, os educandos A5 e A7 utilizam a operação epistemológica plausibilidade, na qual procuraram afirmar seu próprio conhecimento sobre o motivo das características do quadrilátero não serem atendidas (JIMÉNEZ-ALEIXANDRE et al., 2000).

Em seguida, nos turnos 12 e 14, procuramos promover a delimitação de condições. Com isso, buscávamos que os alunos observassem suas ações, descrevendo-as mentalmente, chegando nas características matemáticas de um quadrado (SASSERON, 2013).

O desenvolvimento desse propósito epistemológico, leva o estudante A5 a explicitar a definição de um conceito (JIMÉNEZ-ALEIXANDRE et al., 2000), ao colocar que “um quadrado tem que ter lados iguais e cantos retinhos”, já que um quadrilátero que apresenta lados iguais e ângulos medindo 90º é considerado um quadrado (DOLCE; POMPEO, 2013).

A partir dessas ações, o grupo consegue formar o quadrilátero desejado. Contudo, devido às limitações do material manipulado, A6 percebe que a característica de ângulos retos não será atendida. Para evidenciar sua percepção, o discente faz um apelo aos atributos do objeto no turno 16 (JIMÉNEZ-ALEIXANDRE et al., 2000).

Por fim, no turno 17, quando percebemos que o grupo havia chegado ao conhecimento almejado, promovemos o propósito pedagógico motivação, e o epistemológico proposição de problema (SASSERON, 2013).
Assim, observamos que a partir da interação existente sobre as características do quadrado, os alunos desenvolveram em conjunto e com o auxílio da professora-monitora, um argumento de acordo com os elementos do padrão de Toulmin (2001).

Destacamos que todos os *layouts* apresentados nessa seção de análise foram organizados a partir da adaptação das falas dos alunos ao longo dos episódios apresentados. Com isso, buscamos mostrar de maneira esquemática, como os mais variados discursos organizam-se de acordo com os elementos estruturais de Toulmin (2001). Assim, apresentamos na Figura 2 o modelo de argumento desenvolvido pelo Grupo 2 durante o teste da hipótese do quadrado:

![Diagrama de argumento]

Figura 2 - Layout do argumento desenvolvido pelo Grupo 2 durante o teste da hipótese do quadrado
Fonte: Adaptado de Toulmin (2001) com base nas informações constituídas durante a pesquisa

A partir da manipulação dos materiais durante todo o episódio em análise, os estudantes puderam obter os dados empiricamente, ou seja, em ação direta com a atividade experimental. Desta maneira, segundo Toulmin (2001), temos que a passagem dos dados (D) para a conclusão (C) de que o quadrilátero que estava sendo analisado era um quadrado, deu-se mediante a autorização explícita das garantias (W1 e W2) feitas por A7 e A5, as quais afirmaram que um quadrado deveria possuir lados iguais e ângulos retos. Logo, o apoio (B) desse argumento está condizente com a definição matemática de quadrado.

Destacamos que, conforme assevera Toulmin (2001), o qualificador modal (Q) consiste em uma referência que explicita um certo grau de força para a conclusão, os quais podem ser apresentados por meio de advérbios. Portanto, ao usar o adjunto adverbal “Está bom”, o estudante A6 fortificou o argumento em construção, informando que se fossem colocadas mais bolinhas no cercado, o formato não se manteria (CAMPEDELLI; SOUZA, 2000).

Entretanto, devido às limitações existentes no objeto manuseado, A6 encontra uma refutação (R) para o conceito encontrado. Tal condição de exceção, mostra que nessa situação
experimental em particular, a característica de ângulos medindo 90º não pode ser atendida, contestando, assim, as suposições criadas (TOULMIN, 2001).

Desta maneira, a argumentação desenvolvida pelos estudantes se encaixa no layout completo proposto por Toulmin (2001), apresentando todos os elementos necessários para um argumento bem estruturado.

Também percebemos que, de acordo com Sasseron (2013) e Sasseron e Carvalho (2013, 2014), as intervenções da professora-monitora no processo argumentativo, levaram os educandos a refletirem conjuntamente suas ações, possibilitando a tomada de consciência sobre o fenômeno investigado, a organização de ideias, bem como a elaboração de explicações. Logo, nossa postura de mediação auxiliou na constituição de uma estrutura argumentativa completa.

Depois de verificarmos que ambos os grupos já haviam chegado à conclusão que o melhor formato para cidade seria o circular, iniciamos as etapas tomando consciência de como foi produzido o efeito desejado e dando explicações causais, que também aconteceram simultaneamente. Após as socializações dos alunos, passamos à última etapa do encontro, escrevendo e desenhando, na qual buscava sistematizar individualmente a aprendizagem ocorrida durante a aula (CARVALHO et al., 2009; CARVALHO, 2013).

No sábado seguinte, aconteceu a fase relacionando atividade e cotidiano, em que procuramos sistematizar e contextualizar o conhecimento gerado no encontro anterior, discutindo os principais conceitos, ideias e dúvidas surgidos (CARVALHO et al., 2009).

Com intuito de promover discussões sobre os conteúdos discentes na atividade experimental, apresentamos aos discentes a seguinte situação: “O Mickey possuía um sítio que passava um rio por dentro dele, como o ratinho desejava doar parte de seu terreno para Donald propôs um desafio a seu amigo, de maneira que para receber esse presente, o pato deveria cercar o máximo de terra com o couro de apenas um boi”5.

O momento em que os estudantes solucionam essa situação é exposto no Quadro 6:

5 A situação foi adaptada do problema resolvido pela princesa Dido ao fundar a cidade de Cartago, que envolvia, de maneira intuitiva, os conceitos de maximização de área com o mínimo de perímetro (MORETO, 2013).
Quadro 6 - Episódio 2 – Momento de resolução da situação problema do Pato Donald

<table>
<thead>
<tr>
<th>Turno</th>
<th>Discurso</th>
<th>Análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>A7: É fácil... Não é preciso usar o COURO INTEIRO DO BOI. Usa só um pedacinho... Vai cortando de pouquinho em pouquinho assim oh... (desenha linhas horizontais no ar). Aí vai colocando um por cima do outro... Aí daria...</td>
<td>Dados Garantia</td>
</tr>
<tr>
<td>19</td>
<td>(Inicio-se momentos de descontração). Vamos escutar a ideia do A7. Como é A7 que o Donald teria que fazer?</td>
<td>Ações disciplinares Motivação</td>
</tr>
<tr>
<td>20</td>
<td>A7: Eu aí...</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>A6: Eu ia cortando o couro em fitas, e ia construindo... Ia fazendo uma cerca com o couro em fita...</td>
<td>Garantia Dedução</td>
</tr>
<tr>
<td>22</td>
<td>A7: Assim ia dar bastante...</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Prof: Ai então o couro ia dar muito... Aqui (indica A3 para que pudesse falar).</td>
<td>Ações disciplinares Delimitação de condições</td>
</tr>
<tr>
<td>24</td>
<td>A3: Ele ia cortando o couro bem fininho e ia colocando...</td>
<td>Conclusão Dedução</td>
</tr>
<tr>
<td>25</td>
<td>Prof: Bom fininho... (confirma com a cabeça). Mas ele ia colocando em que formato?</td>
<td>Correlação de variáveis</td>
</tr>
<tr>
<td>26</td>
<td>A1, A3, A4 e A7: De círculo...</td>
<td>Conclusão Classificação</td>
</tr>
<tr>
<td>27</td>
<td>A6: Formato circular.</td>
<td>Conclusão Classificação</td>
</tr>
<tr>
<td>28</td>
<td>Prof: Por que circular?</td>
<td>Avaliação de ideias</td>
</tr>
<tr>
<td>29</td>
<td>A1 e A6: Porque vai ter mais espaço.</td>
<td>Garantia Causalidade</td>
</tr>
</tbody>
</table>

Fonte: Produzido com base nas informações constituídas durante a pesquisa

Para solucionar a situação colocada, A7 infere que o couro do boi poderia ser cortado em tiras para se delimitar a terra. Com isso, o estudante faz uso da operação epistemológica *dedução*, já que ele procura identificar exemplos que auxiliem na construção da cerca em volta do terreno (JIMÉNEZ-ALEIXANDRE et al., 2000).

Após essa colocaçã, os alunos iniciam conversas paralelas de descontração, havendo a necessidade de se empregar *ações disciplinares* para que todos voltassem sua atenção para o problema. Utilizamos ainda, a *motivação* para incentivar A7 a continuar explicitando sua hipótese (SASSERON, 2013).

Desta maneira, nos turnos 21 e 22, A6 e A7 fazem uso da *dedução* para confirmar que com o couro cortado em fitas, Donald teria mais material para construir sua cerca (JIMÉNEZ-ALEIXANDRE et al., 2000).

Na sequência, aplicamos o propósito *delimitação de condições*, para que os estudantes começassem a descrever, nomear e caracterizar de que maneira poderia ser construído o cercado. Desenvolvemos, ainda, *ações disciplinares* para dar oportunidade de A3 pronunciar suas ideias (SASSERON, 2013).
Então, A3 procura caracterizar que o couro deveria ser cortado em tiras finas, utilizando novamente a operação epistemológica *dedução* (JIMÉNEZ-ALEIXANDRE et al., 2000).

Após essa tomada de consciência, entendemos que só faltava definir qual o formato que essa cerca deveria possuir. Para isso, recorremos à *correlação de variáveis*, para que relações fossem construídas a partir das hipóteses colocadas, encaminhando-se para a solução da problemática (SASSERON, 2013). A partir disso, quase de maneira unânime, os educandos colocaram que o círculo seria a melhor forma, desenvolvendo, desta forma, a *classificação* do formato de acordo com suas características (JIMÉNEZ-ALEIXANDRE et al., 2000).

Com intuito de que os estudantes estabeleçam justificativas para o que foi explicitado, no turno 28, recorremos à *avaliação de ideias* (SASSERON, 2013). Sendo que, no turno seguinte, A1 e A6 utilizam a *causalidade* para confirmar o motivo do círculo ser o mais adequado (JIMÉNEZ-ALEIXANDRE et al., 2000).

Nesse episódio 2, percebemos que os educandos construíram um argumento que pode ser organizado de acordo com os elementos propostos por Toulmin (2001). Desta maneira, a partir dos dados (D), em que os alunos observaram e discutiram as variáveis e hipóteses que poderiam solucionar o problema, chegou-se à conclusão (C) que para se obter o máximo de terreno era necessário cortar o couro do boi em tiras finas e construir uma cerca no formato circular.

Como garantias para essa alegação, A6 e A7 colocaram que se o couro fosse cortado em tiras bem finas, Donald iria obter mais material para delimitar a terra (W1). E ainda, A1 e A6 explicitaram que no formato circular o terreno teria mais espaço (W2) (TOULMIN, 2001).

O apoio (B) implícito dessa argumentação se encontra no problema resolvido pela princesa Dido, que faz uso do teorema isoperimétrico para demarcar o máximo de área com o mínimo de material para o contorno (FIGUEIREDO, 1989; TOULMIN, 2001; CAZZOLA, 2008; MORETO, 2013).

Logo, a estrutura do argumento desenvolvido pelos estudantes, de acordo com o padrão de Toulmin (2001) é mostrado na Figura 3:
Figura 3 - Layout do argumento desenvolvido durante a resolução da situação problema do Pato Donald

Fonte: Adaptado de Toulmin (2001) com base nas informações constituidas durante a pesquisa

Logo após o encerramento da situação problema do sítio de Donald, apresentamos um vídeo em que os alunos puderam confirmar a solução encontrada. Depois, desenvolvemos uma dinâmica junto com os educandos para encerrar o dia de atividade e agradecer a contribuição, empenho e participação de todos.

Algumas considerações

Diante das análises realizadas, constatamos que nossas intervenções pedagógicas e epistemológicas como professora-monitora tiveram grande importância no surgimento e desenvolvimento da argumentação, pois propiciaram oportunidades de interações discursivas entre docente-discentes e discentes-discentes, bem como possibilitou momentos de estudo e debate dos conteúdos matemáticos.

Em nossas ações pedagógicas procuramos observar as atitudes e falas dos estudantes para assim dar forma aos aspectos encontrados, de maneira a checar seus entendimentos, orientar o trabalho experimental, compartilhar dados, além de rever ideias já trabalhadas.

Já as intenções epistemológicas suscitaram a construção de um argumento acerto no campo do conhecimento matemático e científico, pois foi por meio das perguntas colocadas e de algumas contraposições de ideias, que os educandos puderam desenvolver os passos investigativos necessários para solução do problema, assim como criari argumentos bem estruturados e com qualidade.

Destarte, torna-se relevante que o educador tenha consciência de seu papel de incentivador e regulador durante a construção de ideias, atentando-se para que os questionamentos pronunciados levem os estudantes a desenvolver e sistematizar o conhecimento.
Frente à argumentação elaborada pelos discentes, com o auxílio de nossas intervenções pedagógicas ou epistêmicas, analisamos sua estrutura de acordo com o Padrão Argumentativo de Toulmin (2001). Observamos que foram construídos argumentos básicos, sendo compostos por apenas dados (D), conclusão (C) e garantia (W).

À medida que perguntas instigantes eram colocadas ao longo do processo, surgiram organismos mais elaborados e fundamentados em relação as justificativas apresentadas, proporcionando mais força às ideias defendidas. Assim, verificamos argumentos mais completos que apresentaram tanto os componentes básicos (dados, conclusões e garantias), quanto apoios (B), qualificadores modais (Q) e refutações (R).

Em relação às operações epistemológicas apresentadas pelos alunos no desenvolvimento da argumentação, percebemos que surgiram diversas formas de ação e pensamento, sendo exploradas principalmente a dedução, a indução, a causalidade, a definição, a classificação, o apelo a analogias e atributos, consistência com experiência e a plausibilidade. Com a identificação dessas falas características, percebemos a maneira como os estudantes iam construindo o conhecimento ao longo da estruturação dos argumentos, proporcionando coerência às ideias expostas e defendidas.

Observamos também que a metodologia investigativa aplicada teve grande relevância para o surgimento de argumentos. Já que o ciclo argumentativo teve início com a proposição do problema a ser analisado, tendo continuidade nas etapas posteriores de manipulação dos materiais para resolução da problemática, bem como nos momentos de exposição do caminho tomado e explicação dos fenômenos estudados.

À vista disso, acreditamos que a partir de nossas intervenções pedagógicas e epistemológicas, conseguimos propiciar um momento educativo diferenciado a nossos estudantes, no qual suas falas, concepções e ideias foram valorizadas, contribuindo na construção do conhecimento e na promoção do pensamento independente e crítico-reflexivo desses discentes.

Agradecimentos

Ao Grupo de Estudo, Pesquisa e Extensão FormAÇÃO de Professores de Ciências e ao Clube de Ciências “Prof. Dr. Cristovam W. P. Diniz” da Universidade Federal do Pará (Campus Castanhal).

Referências

SOBRE OS AUTORES

JOÃO MANOEL DA SILVA MALHEIRO: Licenciado Pleno em Ciências Biológicas pela Universidade Federal do Pará (UFPA). Especialista em Ensino de Ciências pela Universidade do Estado do Pará (UEPA). Mestre em Educação em Ciências e Matemáticas pela

Recebido: 06 de junho de 2017.
Aceito: 21 de setembro de 2017