Estrutura e composição florística de dois fragmentos florestais na região do Baixo Jacuí, RS, Brasil

Rodrigo Agra Balbueno
Paulo Luiz de Oliveira

Departamento de Ecologia – PPG Ecologia/UFGRS, Cx. Postal 15.007
CEP 91.501-970 Porto Alegre/RS.

Aceito para publicação em 17/03/2000

Resumo

Este trabalho aborda o efeito da fragmentação de hábitats florestais através da análise da vegetação arbórea de dois fragmentos de floresta nativa inseridos em áreas de cultivo de eucalipto na região do Baixo rio Jacuí, RS: Horto Florestal São Pedro I (5,19 ha; município de São Jerônimo) e Horto Florestal Santa Rosa (5,75 ha; município de Arroio dos Ratos).

Foi calculado o valor de importância das espécies arbóreas amostradas em doze parcelas justapostas de 10 x 20 m em cada um dos fragmentos, considerando-se os indivíduos com DAP ≥ 10 cm. Foram também calculados o índice de diversidade de Shannon (H') e os índices de similaridade de Sørensen e Jaccard entre os fragmentos.

No fragmento do horto São Pedro I, foram identificados 230 indivíduos pertencentes a 24 espécies de 19 famílias e o índice de diversidade de Shannon foi de 2,23 nats.
No fragmento do horto Santa Rosa, foram amostrados 186 indivíduos pertencentes a 32 espécies de 20 famílias e o índice de Shannon foi igual a 2,88 nats.

A similaridade florística, determinada pelos índices de Jaccard e Sørensen, foi de 0,19 e 0,24, respectivamente, com nove espécies comuns aos dois fragmentos.

Unitermos: fragmentação florestal, estrutura e composição florística, Baixo Jacuí.

Summary

The effect of forest fragmentation was studied through the analysis of arboreal vegetation in two native forest fragments contiguous to *Eucalyptus* reforestation areas in *Baixo Jacuí* region, *Rio Grande do Sul State*, South *Brazil*: Horto São Pedro I (5.19 ha; municipal district of São Jerônimo) and Horto Santa Rosa (5.75 ha; municipal district of Arroio dos Ratos).

The arboreal vegetation was studied by determining the value of importance using twelve 10 x 20 m juxtaposed plots in each fragment. All individuals with diameter of stem at breast height (DBH) ≥ 10 cm were sampled and identified. The index of diversity of Shannon (H') and the indices of similarity of Jaccard and Sørensen were calculated.

In the Horto São Pedro I fragment, 230 individuals of 24 species and 19 families were identified. The index of diversity of Shannon was 2.23 nats.

In the Horto Santa Rosa fragment, 186 individuals of 32 species and 20 families were identified. The index of diversity of Shannon was 2.88 nats.

The floristic similarity determined by the indices of Jaccard and Sørensen was 0.19 and 0.24, respectively, with nine species common to both fragments.
Estrut. e comp. florística de dois fragmentos florestais

Key words: forest fragmentation, structure, floristic composition, Baixo Jacuí, Brazil.

Introdução

Embora a distribuição e a extensão das áreas originalmente cobertas por vegetação florestal no Rio Grande do Sul sejam motivo de controvérsia, é inegável o fato de que a devastação da cobertura florestal, associada tanto à exploração madeireira como à expansão da fronteira agrícola, tenha levado esses ambientes a uma situação muito grave em muitas regiões do Estado, restando poucos e esparsos núcleos capazes de manter condições próximas às primitivas.

A situação em que se encontra a vegetação florestal no Estado do Rio Grande do Sul é determinada por condicionantes que vão desde as questões relativas à dinâmica de distribuição de espécies oriundas de distintos centros de dispersão até o que se refere à atual estrutura das populações humanas no território, cujas origens remetem aos primórdios da colonização européia no Estado, a partir da chegada dos portugueses no século XVIII e alemães e italianos no século XIX.

A fragmentação de ecossistemas, traço marcante da cobertura florestal do Estado, passou a receber maior atenção dos meios científicos internacionais com o incremento na descontinuidade de habitats em todo o planeta (Wiens, 1976). O fenômeno da fragmentação de habitats, associado às alterações decorrentes da apropriação de bens naturais por parte das populações humanas, torna urgente o estabelecimento de bases teóricas capazes de orientar os esforços voltados à conservação da diversidade biológica.

A carência de informações relativas à distribuição geográfica da maioria dos seres vivos faz com que as estimativas de perda da diversidade biológica sejam em geral pouco confiáveis. O conhecimento disponível impede que se possa calcular corretamen-
te a grande variedade de respostas das espécies diante da perda de hábitats e da degradação, mesmo em escala reduzida (Wilcox, 1995).

No Rio Grande do Sul, diversos trabalhos voltados à análise estrutural e florística de florestas foram realizados, principalmente a partir das iniciativas pioneiras de Veloso e Klein (1963; 1968), na área da mata atlântica.

O IBDF (1983) desenvolveu um inventário florestal em distintas formações arbóreas do Estado, visando avaliar o estoque florestal a partir de uma perspectiva do manejo florestal.

O presente trabalho tem por objetivo analisar a composição florística e a estrutura da vegetação arbórea em dois fragmentos de floresta nativa na região do Baixo Jacuí, no Estado do Rio Grande do Sul.

Material e Métodos

Características das áreas de estudo

Foram selecionados dois fragmentos de superfícies equivalentes em duas situações diferentes no que se refere a sua inserção regional, um sobre terrenos de topografia suave-ondulada na Depressão Central (Horto São Pedro I), e outro ocupando áreas de relevo ondulado, na Serra do Sudeste (Horto Santa Rosa).
Os fragmentos escolhidos para o estudo encontram-se junto a áreas de cultivo de eucalipto da Riocell, entre as quais se incluem manchas de vegetação nativa consideradas áreas de preservação permanente. O fato de estarem menos suscetíveis à ação do gado e à circulação de pessoas faz com que esses fragmentos apresentem, como regra geral, estados de conservação melhores do que a grande maioria dos núcleos de vegetação arbórea encontrados em áreas de agricultura e de pecuária.

As áreas estudadas fazem parte da bacia de drenagem do arroio dos Ratos. O horto São Pedro I (30°03’S / 51°43’W; área de 5,19 ha; altitude ≈ 65 m) encontra-se entre a margem esquerda do arroio dos Ratos e a várzea do rio Jacuí, ao norte da cidade de Arroio dos Ratos, a aproximadamente 6 km da BR-290. O horto Santa Rosa (30°11’S / 51°45’W; 5,75 ha de área; altitude ≈ 100 m) localiza-se à margem esquerda do arroio dos Cachorros, afluente da margem direita do arroio dos Ratos (Figura 1).

A região onde se localizam os fragmentos de mata nativa estudados apresenta a maior parte de seus solos incluída nas unidades de mapeamento São Jerônimo e Pinheiro Machado (Brasil, 1973).

A Unidade de Mapeamento São Jerônimo, na qual se localiza o horto São Pedro I, corresponde a um solo Laterítico Bruno-avermelhado distrófico, de textura argilosa sobre relevo ondulado. A Unidade é formada em sua maior parte por solos profundos, bem drenados, de coloração avermelhada, textura franca-argilosa a argilosa com cascalhos. São, em geral, fortemente ácidos, com saturação e soma de bases baixas e com teores baixos de matéria orgânica (Brasil, 1973).
FIGURA 1: Localização das áreas de estudo (adaptado da carta Porto Alegre 1:250.000 – Diretoria de Serviço Geográfico / Ministério do Exército).
Estrut. e comp. florística de dois fragmentos florestais

A Unidade de Mapeamento Pinheiro Machado, em que está o horto Santa Rosa, é formada por Solos Litólicos distróficos, predominantemente bem drenados, de coloração escura e textura média com percentagens elevadas de frações mais grosseiras (areia grossa e cascalhos). São geralmente ácidos, com saturação e somas de bases média e bem providos de matéria orgânica. Em muitos locais, podem ser encontrados afloramentos rochosos constituídos por matações de granito de diversos tamanhos (Brasil, 1973).

A região do Baixo rio Jacuí pertence à Zona Subtropical Sul (Strahler, 1977). Segundo a classificação de Köppen, corresponde ao tipo climático Cfa (subtropical úmido), com uma precipitação anual média de 1.350 mm, bem distribuída ao longo do ano. A estação meteorológica mais próxima dos fragmentos estudados (situada a ≈12 km do horto São Pedro I e ≈27 km do horto Santa Rosa) localiza-se na cidade de Triunfo (29°57’S; 51°40’W; 43 m), junto à margem esquerda do rio Jacuí. Ferraro (1996) calculou as médias de uma série histórica de 28 anos, obtendo a temperatura média anual de 19,1°C, precipitação anual de 1349,9 mm, com o valor máximo observado no período em setembro (312,3 mm) e o mínimo em abril (2,4 mm). A umidade relativa anual é de cerca de 82% e o vento predominante é de sudeste, com velocidade média de 2,2 m/s.

Amostragem da vegetação arbórea

A amostragem da vegetação arbórea em cada fragmento foi realizada utilizando-se 12 parcelas contíguas de 10 m de largura por 20 m de comprimento ao longo do maior eixo do fragmento. Em ambos fragmentos, a orientação do eixo que conduziu a colocação das parcelas foi sul-norte (± 10°) e a sua demarcação foi realizada com o auxílio de bússola e trena.

Foram incluídos todos os indivíduos cujo diâmetro do tronco à altura do peito (DAP) fosse igual ou maior que 10 cm, medi-
do a aproximadamente 1,3 m do solo. No caso de indivíduos ramificados na altura de medida do DAP, foi estabelecido como critério a presença de pelo menos um ramo com o diâmetro mínimo de 10 cm. Nesses casos, as áreas basais foram calculadas separadamente para cada ramo e posteriormente somadas. A altura das árvores amostradas foi medida com o auxílio de uma vara graduada.

Os indivíduos incluídos no estudo foram numerados e aqueles por ventura não identificados a campo foram coletados para posterior determinação em laboratório ou com a ajuda de especialistas.

Para a análise da similaridade florística entre a vegetação nos dois hortos amostrados, foi realizada uma avaliação por índices qualitativos, considerando a presença e a ausência de espécies, mediante o emprego dos índices de similaridade de Jaccard e de Sørensen (Mueller-Dombois e Ellenberg, 1974; Piclou, 1984).

Resultados e Discussão

No horto São Pedro I foram amostradas 24 espécies pertencentes a 19 famílias, enquanto que no horto Santa Rosa o estudo incluiu 32 espécies de 20 famílias diferentes. A tabela 1 apresenta as espécies incluídas no estudo, com a indicação da sua ocorrência.

Os estratos arbóreos dos fragmentos florestais estudados foram pouco semelhantes, embora estejam separados por poucos quilômetros e pertençam à mesma bacia hidrográfica. No entanto, diversos aspectos revelados no estudo possibilitam estabelecer uma série de paralelos entre as duas comunidades florestais, visando a análise da situação da vegetação arbórea.
<table>
<thead>
<tr>
<th>Espécie</th>
<th>Família</th>
<th>Nome-vulgar</th>
<th>ocorrência</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agonandra excelsa Grisebach</td>
<td>Opiliaceae</td>
<td></td>
<td>Santa Rosa: X</td>
</tr>
<tr>
<td>Allophylus edulis (St.-Hil.) Radlk.</td>
<td>Sapindaceae</td>
<td>chal-chal</td>
<td></td>
</tr>
<tr>
<td>Ateleia glaziowiana Baill.</td>
<td>Fabaceae</td>
<td>timbó</td>
<td></td>
</tr>
<tr>
<td>Banara parviflora (A. Gray) Benth.</td>
<td>Flacourtia</td>
<td>guaçatunga</td>
<td></td>
</tr>
<tr>
<td>Campomanesia xanthocarpa Berg</td>
<td>Myrtaceae</td>
<td>guabiromeira</td>
<td></td>
</tr>
<tr>
<td>Casearia decandra Jacq.</td>
<td>Flacourtia</td>
<td>guaçatungas</td>
<td>São Pedro I: X, Santa Rosa: X</td>
</tr>
<tr>
<td>Casearia sylvestrif Sw.</td>
<td>Flacourtia</td>
<td>chã-de-bugre</td>
<td></td>
</tr>
<tr>
<td>Citharexylum myrianthum Cham.</td>
<td>Verbenaceae</td>
<td>tarumá-branco</td>
<td></td>
</tr>
<tr>
<td>Cupania vernalis Camb.</td>
<td>Sapindaceae</td>
<td>camboát-vermelho</td>
<td>São Pedro I: X, Santa Rosa: X</td>
</tr>
<tr>
<td>Erythroxylum argentinum Schulz</td>
<td>Erythroxylaceae</td>
<td>cocão</td>
<td>São Pedro I: X, Santa Rosa: X</td>
</tr>
<tr>
<td>Ficus organensis (Miq.) Miq.</td>
<td>Moraceae</td>
<td>figueira</td>
<td>São Pedro I: X, Santa Rosa: X</td>
</tr>
<tr>
<td>Gochnaia polymorpha (Less.) Cabrera</td>
<td>Asteraceae</td>
<td>cambará</td>
<td>São Pedro I: X, Santa Rosa: X</td>
</tr>
<tr>
<td>Gomidesia palustris (DC.) Legr.</td>
<td>Myrtaceae</td>
<td>guamirim</td>
<td></td>
</tr>
<tr>
<td>Guapira opposita (Vell.) Reitz</td>
<td>Nyctaginaceae</td>
<td>maria-molec</td>
<td>São Pedro I: X, Santa Rosa: X</td>
</tr>
<tr>
<td>Guarea macrophylla Vahl</td>
<td>Meliaceae</td>
<td>pau-d'arco</td>
<td>São Pedro I: X, Santa Rosa: X</td>
</tr>
<tr>
<td>Luehea divaricata Mart.</td>
<td>Tiliaceae</td>
<td>açóita-cavalo</td>
<td>São Pedro I: X, Santa Rosa: X</td>
</tr>
<tr>
<td>Maba inconstans (Jacq.) Grisebach</td>
<td>Ebenaceae</td>
<td>maria-preta</td>
<td>São Pedro I: X, Santa Rosa: X</td>
</tr>
<tr>
<td>Matsayba elaeagnoidea Radlk.</td>
<td>Sapindaceae</td>
<td>camboát-branco</td>
<td>São Pedro I: X, Santa Rosa: X</td>
</tr>
<tr>
<td>Plant Name</td>
<td>Family</td>
<td>Common Name</td>
<td>Status</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Maytenus cassinformis Reiss.</td>
<td>Celastraceae</td>
<td>coração-de-bugre</td>
<td>X</td>
</tr>
<tr>
<td>Myrica glabra (Berg) Legr.</td>
<td>Myrtaceae</td>
<td>guamirim</td>
<td>X</td>
</tr>
<tr>
<td>Myrica multiflora (Lam.) DC.</td>
<td>Myrtaceae</td>
<td>camboim</td>
<td>X</td>
</tr>
<tr>
<td>Myricanthes gigantea (Legr.) Legr.</td>
<td>Myrtaceae</td>
<td>aracá-do-mato</td>
<td>X</td>
</tr>
<tr>
<td>Myricanthes pungens (Berg) Legr.</td>
<td>Myrtaceae</td>
<td>guabiju</td>
<td>X</td>
</tr>
<tr>
<td>Myricaria cuspidata Berg</td>
<td>Myrtaceae</td>
<td>camboim</td>
<td>X</td>
</tr>
<tr>
<td>Ocotea pulchella Mart.</td>
<td>Lauraceae</td>
<td>canela-do-brejo</td>
<td>X</td>
</tr>
<tr>
<td>Patagonula americana L.</td>
<td>Boraginaceae</td>
<td>guajuvira</td>
<td>X</td>
</tr>
<tr>
<td>Rapanea cf. acuminata Mez</td>
<td>Myrsinaceae</td>
<td>capororoca</td>
<td>X</td>
</tr>
<tr>
<td>Rapanea lorentziana Mez</td>
<td>Myrsinaceae</td>
<td>capororoca</td>
<td>X</td>
</tr>
<tr>
<td>Rapanea umbellata (Mart.) Mez</td>
<td>Myrsinaceae</td>
<td>capororocão</td>
<td>X</td>
</tr>
<tr>
<td>Rollinia silvatica (St.-Hil.) Mart.</td>
<td>Annonaceae</td>
<td>araticum</td>
<td>X</td>
</tr>
<tr>
<td>Roupaia brasiliensis KI.</td>
<td>Proteaceae</td>
<td>carvalho</td>
<td>X</td>
</tr>
<tr>
<td>Ruprechtia laxiflora Meissn.</td>
<td>Polygonaceae</td>
<td>farinha-seca</td>
<td>X</td>
</tr>
<tr>
<td>Schinus terebinthifolius Raddi</td>
<td>Anacardiaceae</td>
<td>areeira-vermelha</td>
<td>X</td>
</tr>
<tr>
<td>Sebastiania brasiliensis Spreng.</td>
<td>Euphorbiaceae</td>
<td>branquilo</td>
<td>X</td>
</tr>
<tr>
<td>Sebastiania commersoniana (Baill.) Smith & Downs</td>
<td>Euphorbiaceae</td>
<td>branquilo</td>
<td>X</td>
</tr>
<tr>
<td>Soroea bonplandii (Baill.) Burg., Lanj. & Boer</td>
<td>Moraceae</td>
<td>cincho</td>
<td>X</td>
</tr>
<tr>
<td>Syagrus romanoffiana (Cham.) Glassman</td>
<td>Areaceae</td>
<td>gerivá</td>
<td>X</td>
</tr>
<tr>
<td>Tabebuia heptaphylla (Vellozo) Toledo</td>
<td>Bignoniaceae</td>
<td>ipê-roxo</td>
<td>X</td>
</tr>
<tr>
<td>Trichilia clauseni C. DC.</td>
<td>Meliaceae</td>
<td>catiguá-vermelho</td>
<td>X</td>
</tr>
<tr>
<td>Trichilia elegans A. Juss</td>
<td>Meliaceae</td>
<td>catiguá-de-ervilha</td>
<td>X</td>
</tr>
<tr>
<td>Vitex megapotamica (Spreng.) Mold.</td>
<td>Verbenaceae</td>
<td>tarumã</td>
<td>X</td>
</tr>
<tr>
<td>Xylosma cf. prockia (Turczaninov) Turczaninov</td>
<td>Flacourtiaaceae</td>
<td>sucará</td>
<td>X</td>
</tr>
<tr>
<td>Zanthoxylum rhoifolium Lam.</td>
<td>Rutaceae</td>
<td>mamica-de-cadela</td>
<td>X</td>
</tr>
</tbody>
</table>
Não há similaridade florística entre os fragmentos em foco, conforme revelam os índices qualitativos de Jaccard e de Sørensen (0,19 e 0,24 respectivamente) calculados. As 9 espécies comuns a ambos os fragmentos correspondem a 34,6% das espécies amostradas no fragmento São Pedro I e 28,1% das amostradas no fragmento Santa Rosa. Com relação às espécies exclusivas, no fragmento São Pedro I essas atingiram um total de 15 (65,3%), enquanto que no fragmento Santa Rosa essas foram 23 (71,9%).

Algumas das espécies comuns, como *Ficus organensis*, *Luehea divaricata* e *Rapanea umbellata*, têm marcante participação na fisionomia dos remanescentes florestais da região (Neves et al., 1983), embora nas duas amostragens ocupem posições intermediárias quanto ao valor de importância (VI) (Tabelas 2 e 3).

Sebastiania commersoniana apresentou o maior VI em ambos os fragmentos: 80,8 (29,9% do total) e 37,8 (12,6% do total) nos hortos São Pedro I e Santa Rosa, respectivamente (Tabelas 2 e 3). Trata-se de uma espécie com uma grande afinidade por lugares úmidos e abertos, sendo praticamente ausente em florestas muito densas (Reitz et al., 1988).

No fragmento São Pedro I, *S. commersoniana* apresentou os maiores valores relativos em todos os parâmetros que fazem parte do cálculo do VI (Tabela 2), enquanto no fragmento Santa Rosa *Myrcianthes gigantea*, por seu maior porte, apresentou o valor de dominância relativa (DoR) mais elevado do que *S. commersoniana* (Tabela 3), muito embora o número de indivíduos seja menor.

No fragmento Santa Rosa, a ocorrência de *S. commersoniana* deu-se quase que exclusivamente nas classes de diâmetro menores, ao passo que os indivíduos de *M. gigantea* enquadraram-se em quatro das cinco classes de diâmetro estabelecidas.

Um outro aspecto que, no fragmento Santa Rosa, suscita uma discussão a respeito da dinâmica de regeneração natural da
TABELA 2: Parâmetros fitossociológicos estimados para as espécies amostradas no horto São Pedro I, São Jerônimo, RS, em ordem decrescente de Valores de Importância (VI). DR = Densidade Relativa (%); FR = Frequência Relativa (%); DoR = Dominância Relativa (%).

<table>
<thead>
<tr>
<th>ESPÉCIE</th>
<th>DR</th>
<th>FR</th>
<th>DoR</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sebastiania commersoniana (Baill.) Smith & Downs</td>
<td>38,3</td>
<td>15,4</td>
<td>27,2</td>
<td>80,8</td>
</tr>
<tr>
<td>2. Guarea macrophylla Vahl</td>
<td>11,7</td>
<td>9,0</td>
<td>10,3</td>
<td>31,0</td>
</tr>
<tr>
<td>3. Casearia sylvestris Sw.</td>
<td>8,7</td>
<td>11,5</td>
<td>7,4</td>
<td>27,6</td>
</tr>
<tr>
<td>4. Ficus organensis (Miq.) Miq.</td>
<td>0,9</td>
<td>2,6</td>
<td>20,6</td>
<td>24,0</td>
</tr>
<tr>
<td>5. Rapanea umbellata (Mart.) Mez</td>
<td>5,2</td>
<td>10,3</td>
<td>8,3</td>
<td>23,8</td>
</tr>
<tr>
<td>6. Ateleia glazioviana Baill.</td>
<td>11,3</td>
<td>3,9</td>
<td>6,4</td>
<td>21,6</td>
</tr>
<tr>
<td>7. Luehea divaricata Mart.</td>
<td>3,5</td>
<td>7,7</td>
<td>5,3</td>
<td>16,5</td>
</tr>
<tr>
<td>8. Schinus terebinthifolius Raddi</td>
<td>2,2</td>
<td>5,1</td>
<td>3,0</td>
<td>10,3</td>
</tr>
<tr>
<td>9. Chrysophyllum marginatum (Hoek. et Arn.) Radlk.</td>
<td>3,0</td>
<td>5,1</td>
<td>1,7</td>
<td>9,8</td>
</tr>
<tr>
<td>10. Cupania vernalis Camb.</td>
<td>3,9</td>
<td>3,9</td>
<td>1,7</td>
<td>9,5</td>
</tr>
<tr>
<td>11. Rapanea lorentziana Mez</td>
<td>1,3</td>
<td>3,9</td>
<td>0,6</td>
<td>5,7</td>
</tr>
<tr>
<td>12. Rollinia silvatica (St.-Hil.) Mart.</td>
<td>1,7</td>
<td>2,6</td>
<td>0,8</td>
<td>5,1</td>
</tr>
<tr>
<td>13. Víex megapotamaica (Spreng.) Mold.</td>
<td>0,9</td>
<td>2,6</td>
<td>1,3</td>
<td>4,7</td>
</tr>
<tr>
<td>14. Casearia decandra Jacq.</td>
<td>0,9</td>
<td>2,6</td>
<td>1,1</td>
<td>4,5</td>
</tr>
<tr>
<td>15. Ocotea pulchella Mart.</td>
<td>1,3</td>
<td>2,6</td>
<td>0,5</td>
<td>4,4</td>
</tr>
<tr>
<td>16. Myrcia glabra (Berg) Legr.</td>
<td>1,7</td>
<td>1,3</td>
<td>1,1</td>
<td>4,1</td>
</tr>
<tr>
<td>17. Syagrus romanzeffiana (Cham.) Glassman</td>
<td>0,4</td>
<td>1,3</td>
<td>0,7</td>
<td>2,4</td>
</tr>
<tr>
<td>18. Citharexylum myrianthum Cham.</td>
<td>0,4</td>
<td>1,3</td>
<td>0,7</td>
<td>2,4</td>
</tr>
<tr>
<td>19. Erythroxylum argentimum Schulz</td>
<td>0,4</td>
<td>1,3</td>
<td>0,5</td>
<td>2,2</td>
</tr>
<tr>
<td>20. Sebastiania brasiliensis Spreng.</td>
<td>0,4</td>
<td>1,3</td>
<td>0,4</td>
<td>2,1</td>
</tr>
<tr>
<td>21. Gochnatia polymorpha (Less.) Cabrera</td>
<td>0,4</td>
<td>1,3</td>
<td>0,2</td>
<td>1,9</td>
</tr>
<tr>
<td>22. Ruprechtia laxiflora Meissn.</td>
<td>0,4</td>
<td>1,3</td>
<td>0,2</td>
<td>1,9</td>
</tr>
<tr>
<td>23. Rapanea cf. acuminata Mez</td>
<td>0,4</td>
<td>1,3</td>
<td>0,2</td>
<td>1,9</td>
</tr>
<tr>
<td>24. Gomideia palustris (DC.) Legr.</td>
<td>0,4</td>
<td>1,3</td>
<td>0,1</td>
<td>1,8</td>
</tr>
</tbody>
</table>
TABELA 3: Parâmetros fitossociológicos estimados para as espécies amostradas no horto Santa Rosa, Arroio dos Ratos, RS, em ordem decrescente de Valores de Importância (VI). DR = Densidade Relativa (%); FR = Frequência Relativa (%); DoR = Dominância Relativa (%).

<table>
<thead>
<tr>
<th>ESPÉCIE</th>
<th>DR</th>
<th>FR</th>
<th>DoR</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sebastiana commersoniana (Baill.) Smith & Downs</td>
<td>17,2</td>
<td>8,8</td>
<td>11,8</td>
<td>37,8</td>
</tr>
<tr>
<td>2. Myrcianthes pungens (Berg) Legr.</td>
<td>10,8</td>
<td>7,9</td>
<td>11,2</td>
<td>29,9</td>
</tr>
<tr>
<td>3. Myrcianthes gigantea (Legr.) Legr.</td>
<td>5,4</td>
<td>6,1</td>
<td>12,2</td>
<td>23,7</td>
</tr>
<tr>
<td>4. Luehea divaricata Mart.</td>
<td>6,5</td>
<td>7,0</td>
<td>9,8</td>
<td>23,3</td>
</tr>
<tr>
<td>5. Myrciaria cuspidata Berg</td>
<td>10,2</td>
<td>7,9</td>
<td>3,6</td>
<td>21,7</td>
</tr>
<tr>
<td>6. Maba inconstans (Jacq.) Grisebach</td>
<td>7,5</td>
<td>7,9</td>
<td>4,9</td>
<td>20,4</td>
</tr>
<tr>
<td>7. Sorocea bonplandii (Baill.) Burg., Lanj. & Boer</td>
<td>8,1</td>
<td>7,0</td>
<td>2,5</td>
<td>17,6</td>
</tr>
<tr>
<td>8. Roupala brasiliensis KL.</td>
<td>3,2</td>
<td>4,4</td>
<td>6,4</td>
<td>14,1</td>
</tr>
<tr>
<td>9. Ficus organensis (Miq.) Miq.</td>
<td>0,5</td>
<td>0,9</td>
<td>11,9</td>
<td>13,4</td>
</tr>
<tr>
<td>10. Myrcia multiflora (Lam.) DC.</td>
<td>4,8</td>
<td>6,1</td>
<td>2,3</td>
<td>13,3</td>
</tr>
<tr>
<td>11. Rapanea umbellata (Mart.) Mez</td>
<td>2,2</td>
<td>2,6</td>
<td>4,3</td>
<td>9,1</td>
</tr>
<tr>
<td>12. Patagonula americana L.</td>
<td>2,2</td>
<td>3,5</td>
<td>2,6</td>
<td>8,3</td>
</tr>
<tr>
<td>13. Campomanesia xanthocarpa Berg</td>
<td>3,8</td>
<td>2,6</td>
<td>1,8</td>
<td>8,2</td>
</tr>
<tr>
<td>14. Syagrus romanzoffiana (Cham.) Glassman</td>
<td>2,7</td>
<td>3,5</td>
<td>1,7</td>
<td>7,9</td>
</tr>
</tbody>
</table>

Continua
Continuação

<table>
<thead>
<tr>
<th></th>
<th>Actinostemon concolor (Spreng.) Müll. Arg.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td>2.2</td>
<td>3.5</td>
<td>0.8</td>
<td>6.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Vitex megapotamica (Spreng.) Mold.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td>1.6</td>
<td>2.6</td>
<td>1.5</td>
<td>5.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Matayba elaeagnoides Radlk.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td></td>
<td>1.1</td>
<td>1.8</td>
<td>2.0</td>
<td>4.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Banara parviflora (A. Gray) Benth.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td></td>
<td>1.6</td>
<td>1.8</td>
<td>1.1</td>
<td>4.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Casearia decandra Jacq.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td></td>
<td>1.1</td>
<td>1.8</td>
<td>1.4</td>
<td>4.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Erythroxylum argentimum Schulz</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td>1.1</td>
<td>1.8</td>
<td>0.9</td>
<td>3.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Trichilia claussenii C. DC.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td></td>
<td>0.5</td>
<td>0.9</td>
<td>1.3</td>
<td>2.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Zanthoxylum rhoifolium Lam.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td></td>
<td>0.5</td>
<td>0.9</td>
<td>0.9</td>
<td>2.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Guapira opposita (Vell.) Reitz</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td></td>
<td>0.5</td>
<td>0.9</td>
<td>0.6</td>
<td>2.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Agonandra excelsa Grisebach</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td></td>
<td>0.5</td>
<td>0.9</td>
<td>0.6</td>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Xylosma cf. prockia (Turczaninov) Turczaninov</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
<td>0.5</td>
<td>0.9</td>
<td>0.6</td>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Maytenus cassinniformis Reiss.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td></td>
<td>0.5</td>
<td>0.9</td>
<td>0.5</td>
<td>1.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Tabebuia heptaphylia (Vellozo) Toledo</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td></td>
<td>0.5</td>
<td>0.9</td>
<td>0.4</td>
<td>1.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Allophylus edulis (St.-Hil.) Radlk.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td></td>
<td>0.5</td>
<td>0.9</td>
<td>0.1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Cupania vernalis Camb.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td></td>
<td>0.5</td>
<td>0.9</td>
<td>0.1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Coussapoa schottii Miq.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
<td>0.5</td>
<td>0.9</td>
<td>0.1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ficus insipida Wild.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td></td>
<td>0.5</td>
<td>0.9</td>
<td>0.1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Trichilia elegans A. Juss.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td></td>
<td>0.5</td>
<td>0.9</td>
<td>0.1</td>
<td>1.5</td>
</tr>
</tbody>
</table>
A vegetação é o percentual de árvores mortas (Tabela 4). O valor de 9,3% de indivíduos mortos em pé sobre o total amostrado pode ser considerado alto, ao comparar-se com um estudo realizado com o mesmo valor mínimo de DAP (10 cm) que obteve valores de 5,2% e 2,6% em duas áreas de mata de encosta em bom estado de conservação, no Rio Grande do Sul (Jarenow, 1994).

TABELA 4: Resumo comparativo dos resultados obtidos em cada fragmento estudado:

<table>
<thead>
<tr>
<th>PARÂMETRO</th>
<th>HORTO SÃO PEDRO I</th>
<th>HORTO SANTA ROSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área do fragmento (ha)</td>
<td>5,19</td>
<td>5,75</td>
</tr>
<tr>
<td>Área amostrada</td>
<td>2.400 m²</td>
<td>2.400 m²</td>
</tr>
<tr>
<td>Indivíduos amostrados</td>
<td>236</td>
<td>205</td>
</tr>
<tr>
<td>% de árvores mortas</td>
<td>2,5</td>
<td>9,3</td>
</tr>
<tr>
<td>% de indivíduos ramificados</td>
<td>55,5</td>
<td>17,6</td>
</tr>
<tr>
<td>Densidade média (indiv./parcela)</td>
<td>19,7</td>
<td>17,1</td>
</tr>
<tr>
<td>Altura média do dossel</td>
<td>9,5 m</td>
<td>10,6 m</td>
</tr>
<tr>
<td>Famílias/espécies</td>
<td>19/24</td>
<td>20/32</td>
</tr>
<tr>
<td>Área basal total (m²)</td>
<td>8,11</td>
<td>8,40</td>
</tr>
<tr>
<td>Área basal média (m²/indivíduo)</td>
<td>0,035</td>
<td>0,045</td>
</tr>
<tr>
<td>Diversidade (H')</td>
<td>2,23</td>
<td>2,88</td>
</tr>
<tr>
<td>DTA (indivíduos/ha)</td>
<td>958,3</td>
<td>775</td>
</tr>
</tbody>
</table>
Embora para a grande maioria dos indivíduos mortos não fosse possível a identificação taxonômica, em alguns casos o padrão de ramificação e a textura da superfície dos troncos indicaram tratar-se de S. commersoniana. Foram observados ramos secundários secos e ocos em diversos indivíduos vivos dessa espécie, devido à natural perda de vigor à medida que vão atingindo idades mais avançadas, o que permite supor que se tratam de remanescentes de alterações anteriores à atual condição.

No fragmento São Pedro I, S. commersoniana destacou-se também pelo grande número de indivíduos ramificados desde a base (55,5%), o que pode servir como indício de ação antrópica, por esse comportamento frequentemente estar associado ao rebrote após o corte. No horto Santa Rosa, esse valor fica em 17,6% do total de espécimes amostrados (Tabela 4). Deve-se ressaltar que S. commersoniana é uma espécie amplamente utilizada para o fornecimento de lenha (Reitz et al., 1988).

A participação marcante de Ficus organensis no estrato arbóreo do fragmento Santa Rosa é ilustrada pela dominância relativa. Essa espécie ocorre com somente um indivíduo na amostragem mas, em função do notável volume de seu tronco (1,46 m de diâmetro), corresponde ao segundo valor mais alto para aquele parâmetro (Tabela 3).

Em ambas as situações analisadas, as espécies que apresentaram os maiores valores de importância foram aquelas com maiores valores de densidade e frequência relativas, com exceção de Ficus organensis.

Chama a atenção, em ambas as situações, a presença de espécies típicas dos sub-bosques das matas da região, como Casearia sylvestris e Schinus terebinthifolius, no fragmento São Pedro I (Tabela 2), e Actinostemon concolor, Myrciaria cuspidata, Sorocea bonplandii e Trichilia elegans no fragmento Santa Rosa (Tabela 3). A ocorrência de indivíduos dessas espécies com diâmetros superiores a 10 cm pode ser atribuída a alterações verificadas na cober-
tura arbórea dos dois fragmentos, provavelmente devido à retirada seletiva de espécies de interesse econômico (inclusive as utilizadas para queima).

A análise da distribuição dos indivíduos em classes de diâmetro revela que, em ambos os fragmentos, há uma clara predominância de indivíduos de diâmetros reduzidos. No fragmento São Pedro I (Figura 2), 75,3% dos indivíduos situam-se na primeira classe, distribuindo-se os 24,7% nas outras quatro classes, dos quais 19% correspondem à segunda menor classe. No fragmento Santa Rosa (Figura 3), essa diferença não é tão marcante, pois a primeira classe pertencem 59,68% dos indivíduos amostrados, com os restantes 40,3% distribuídos nas demais classes, sendo 27,4% na segunda menor classe. É interessante notar que, apesar dessa diferença entre os dois fragmentos, com relação à classe que corresponde a diâmetros superiores a 50 cm, os valores encontrados são bastante próximos (1,7% no São Pedro I e 1,6% no Santa Rosa). No fragmento São Pedro I foram amostrados 4 indivíduos com diâmetros superiores a 50 cm, de *Rapanea umbellata*, *Luehea divaricata* e *Ficus organensis* (2 indivíduos), enquanto no Santa Rosa esses foram 3, de *Rapanea umbellata*, *Roupala brasiliensis* e *Ficus organensis*.

Outro ponto que merece destaque quanto à estrutura das matas são as áreas basais das árvores amostradas. No fragmento São Pedro I, os 230 indivíduos amostrados totalizaram uma área basal de 8,11 m², enquanto que no Santa Rosa, os 186 indivíduos perfizeram um total de 8,40 m². Considerando-se os valores médios por indivíduo, no São Pedro I esse alcança 0,035 m²/árvore e, no Santa Rosa, 0,045 m²/árvore (Tabela 4), que corresponde a um valor aproximado de 28% superior àquele. Levando-se essa comparação a um extremo de simplificação, poderia dizer-se que, no fragmento Santa Rosa, cada uma das árvores amostradas apresenta a área basal 28% maior do que as consideradas no fragmento São Pedro I.
FIGURA 2: Horto São Pedro I: Distribuição dos indivíduos amostrados em classes de diâmetro (a = 10 a 20 cm; b = 20,01 a 30 cm; c = 30,01 a 40 cm; d = 40,01 a 50 cm; e = > 50,01 cm).

FIGURA 3: Horta Santa Rosa: Distribuição dos indivíduos amostrados em classes de diâmetro (a = 10 a 20 cm; b = 20,01 a 30 cm; c = 30,01 a 40 cm; d = 40,01 a 50 cm; e = > 50,01 cm).

As medições das alturas dos indivíduos permitiram também o estabelecimento de uma estratificação vertical da vegetação, que correspondeu às seguintes faixas: no fragmento São Pedro I havia um sub-bosque com altura de até 8 m que, por possuir um
numeroso contingente de indivíduos com diâmetros inferiores a 20 cm, foi a de maior freqüência; de 9 a 12 m concentrou-se o estrato que forma o dossel da mata, com indivíduos que correspondem às classes de diâmetro intermediárias. Entre 13 e 16 m encontravam-se as árvores emergentes, de diâmetros avantajados e fustes longilíneos, como por exemplo *Ficus organensis* e *Syagrus romanzoffiana*, respectivamente (Figuras 4 e 5).
No fragmento Santa Rosa, à primeira faixa, a de maior frequência, correspondiam alturas inferiores a 10 m, estando o dossel entre 10 e 14 m e as emergentes com alturas entre 15 m e 18 m.

A riqueza de espécies foi maior no fragmento Santa Rosa, com o número total de espécies 25% maior do que no fragmento São Pedro I. Como o esforço amostral foi igual para os dois fragmentos, essa constatação pode servir como indicador de um melhor estado de conservação daquele fragmento.

Com relação aos índices de diversidade, os valores calculados passam a adquirir maior consistência ao serem analisados em conjunto com os demais resultados obtidos. Assim sendo, o valor de 2,88 nats obtido no fragmento Santa Rosa revelou uma estrutura mais complexa do estrato arbóreo, ao comparar-se com 2,23 nats obtido no fragmento São Pedro I.

No fragmento São Pedro I as cinco espécies de mais alto VI concentraram 62,4% desse valor, enquanto no fragmento Santa Rosa essa proporção cai para 45,4%.

O número de indivíduos amostrados em uma área de 2.400 m² projetou uma densidade total por área (DTA) de 958,3 indivíduos/ha no fragmento São Pedro I e de 775 indivíduos/ha no fragmento Santa Rosa (Tabela 4). Essa diferença parece refletir um aspecto já revelado pela quantificação das áreas basais dos indivíduos amostrados. O fato do fragmento do horto São Pedro I apresentar dois terços dos indivíduos com diâmetros inferiores a 20 cm permite que as árvores apresentem uma maior densidade. Enquanto que nesse horto as duas primeiras classes de diâmetro acumulam 94,4% dos espécimes amostrados, no horto Santa Rosa esse valor atinge 87,1%.

Nas duas situações descritas havia uma nítida participação de espécies que fazem parte dos estádios iniciais da floresta secundária, como é o caso de Sebastiania commersoniana, Luehea divericata, Casearia sylvestris, Cupania vernalis, Citharexylum

Estrut. e comp. florística de dois fragmentos florestais

myrianthum, Matayba elaeagnoides, Allophylus edulis e Vitex megapotamica (Reitz et al., 1988).

A alta densidade total associada à baixa diversidade, conforme o que ocorreu no horto São Pedro I, pode ser atribuída a alterações ambientais severas, como, por exemplo, a um banco de espécies depauperado regionalmente e a altas taxas reprodutivas das espécies colonizadoras (Denslow, 1995), o que determina em grande medida a sistemática de recolonização desses locais.

Embora pertencendo à mesma bacia hidrográfica e distan-
do cerca de 15 km entre si, os fragmentos florestais estudados apresentam-se pouco semelhantes, tendo como espécies comuns árvores abundantes em todas as matas da região.

Em ambos os fragmentos, a espécie que alcançou os maio-
res valores de importância foi *S. commersoniana*. O fato de domi-
nar amplamente (principalmente no fragmento São Pedro I), as-
sociado a suas características como heliófila, o que a relaciona às
fases iniciais do desenvolvimento das florestas, significa que, in-
dependente da origem dos distúrbios que afetaram os fragmentos
antes de terem sido adquiridos pela Riocell, a situação hoje
verificada corresponde à de uma floresta secundária.

A importância de *Sebastiania commersoniana* nas duas áreas
permite que se afirme tratarem-se de áreas alteradas em maior ou
menor grau por ações antrópicas e sugere perspectivas para estu-
dos voltados à dinâmica de regeneração natural dessa espécie, cujo
adecuado manejo pode ser de fundamental importância para a
reconstituição de paisagens degradadas.

Agradecimentos

Os autores agradecem a Bruno Irgang (UFRGS), João
Larocca (UNISINOS) e Marcos Sobral (UFRGS) pelo auxílio na
determinação do material botânico do estudo.

43
Referências bibliográficas

