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PARTITION OF HEAT PRODUCTION IN THE RAT
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RESUMO
Particao da Producao de calor mo rato

Realizou-se um exame da literatura cientifica sobre a produgao
de calor através do metabolismo aerobico ao_nivel do organismo como
um todo e ao nivel de orgaos individuais. Pode-se com isso obter uma
estimativa da particao da producao de calor no rato.
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ABSTRACT

The literature on metabolic heat production at the level of
the whole organism and at the level of individual organs is
examined. An estimate of the partition of heat production in the
rat is presented.
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INTRODUCTION

Over two centuries ago, Lavoisier and Laplace conducted the
first scientific measurement of the heat produced by the animal
body (Lavoisier & Laplace, 1780). The two famous Frenchmen also
suggested that animal heat was the result of the common phenomenon
of combustion, that is, a process in which a nutrient reacts with
oxygen to produce water, carbon dioxide, and heat. Originally, it
was thought that combustion took place in the Tungs (Lavoisier,
1777). For several decades, evidence was accumulated for the idea
that combustion occurs at the tissue level (Schutzenberger, 1874),
and when it was demonstrated that the process takes place in the
mitochondria of billions of cells everywhere in the body (Keilin,
1925), the question arose about the partition of heat production
among different organs. If respiration (the gradual combustion
observed in the organism) takes place in several parts of the body,
can we assume that all organs are equally effective in producing
heat? And is the distribution the same during rest and exercise,
in the cold and at thermoneutrality? These questions have been
dealt with in an unsystematic manner during the last 50 years, and
the objective of this paper is to summarize the empirical evidence
currently available concerning the most widely used laboratory
animal, the rat.

WHOLE ORGANISM METABOLISM

A 300 g rat resting quietly in a thermally neutral environment
(Ta = 259C) consumes approximately five millilitars of oxygen per
minute (Boyle et al., 1981; Field et al., 1939; Gordon, 1988;
Nakatsuka et al., 1983; Page & Chenier, 1953). Assuming that the
animals are eating a reqular balanced rodent chow, and alsgo
assuming that anaerobic metabolic activity is negligible, the
comsumption of each milliliter of oxygen indicates the production
of 20.3 joules of heat (Eckert & Randall, 1983; Schmidt-Nielsen,
1983). Consequently, the resting heat production (RHP) of the rat
is about 5.8 W/kg.

The RHP of the rat can be increased several fold by an
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increase in activity level {Gordon, 19BB; Morrison, 1968; Poole &
Stephenson, 1977) or by a decreased ambient temperature (Gordon,
1987; Herrington, 1940; Refinetti & Carlisle, 1986; Swift &
Forbes, 1939)., Smaller but still significant changes in RHP are
produced by endogenous circadian oscillations (5Shido et al, 1986)
and by changes in the nutritional state of the animals (Boyle et
al, 1981; Rothwell & Stock, 1981). Finally, larger rats usually
have correspondingly higher rates of heat production expressed in a
per animal basis, but slightly lower rates when expressed per unit
of body masss (Refinetti et al., in press; Spiers & Adair, 1986;
Taylor, 1960).

TISSUE METABOLISM

Most studies on tissue metabolism are conducted in wvitro.
Slices of tissue or whole organs are extracted from the animal and
tested in metabolic chambers. Ideally, such studies should be
conducted in vivo, so that all physiolegical conditions prevailing
in the intact animal can be preserved. In practice, however, it
is usually impossible to measure the oxygen concentration in the
blood flowing to and from each organ. In most cases, therefore,
some uncertainty remains regarding the accuracy of the experimental
results, althought there is some evidence that in vitro
measurements are good indicators of im yivo activity (Field et al.,
1939;: Krebs, 1950; Martin & Fuhrman, 1941).

Determinations of the resting metabolic rate of different
tissues (expressed in terms of volume of oxygen consumed per minute
per unit of fresh tissue mass) by different authers are shown in
Table 1. As metabolic rate is not reported in the same units by
all authors, some conversions were necessary. These involved the
assumptions that the consumption of 1 liter of oxygen STPD
releases 20.3 kJ of heat, that 1 liter of oxygen STPD contains
44 .6 mmol of substance, and that the dry weight of an organ
corresponds to 25% of its wet weight.
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TABLE 1 - Metabolic Rate of Different Tissues.

ORGAN ANIMAL ml/min/kg SOURCE

Brain dog 99 Ga {dl. 1914
rat 50 dwell & Wittenberg, 1974
rat 100 Silul et al, 1983
rat 3 Field et al., 1939

Kidney rat 90 Caldwell & Hitt.nbirg, 1974
rat 49 Freed l* ﬁl' 1973
rat 100 Jansky art, 1963
rat 69 Field gt al, 1938

Heart rat 60 Caldwell & Wittenberg, 1974
dog 48 Evans & Starling, 1913
rat 32 Field gt al., 1939

Liver rat 55 Caldwell & Wittenberg, 1974
rabbit 10 Harken gt al., 1977
rat 34 Field gt al. 1939

Lung rat 10 Caldwell & Wittenberg, 1974
dog 10 Evans & Starling, 1913
dog 10 Weber & Visscher, 1969
rat 21 Field gt al., 1939

Muscle' dog 5 Stainsby & Otis, 1964
rat 9 Kolar & Jansky, 1984
rat 12 Dubois-Ferriere & Chinet, 1981
mouse 18 Wickler, 1981
rat 6 Jansky & Hart, 1963
rat 16 Field gt al. 1939

Diaphragm rat 30 Caldwell & Wittenberg, 1974
rat 3o Field gt al., 1939

WAT? rat 20 Hallgren gt al. 1986
human 20 Sorbris gt 1979

BaT? rot 43 De Castro & Hil1, 1988
rat 21 Foster & Frydman, 1978
hamster 34 Nedergaard & Lindberg, 1979

Splenn rat 22 Field gt al., 1939
rat 13 Krebs, 1950

Testis rat 17 Field gt al. 1939

Gut rat 17 Field gt al., 1939

Skeleton rat 3 Field gt al, 1939

Skin rat 7 Field et al, 1939

Artery pig 2 Scott gt gl., 1970

15t11|til muscle
thitt adipose tissue
3!rnun adipose tissue
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PARTITION OF HEAT PRODUCTION

Based on the experimental data shown in Table 1 and on the
results of measurements of organ weight in the rat (Field et al.,
1939; Foster & Frydman, 1978; Turton, 1978), it is possible to
calculate the partition of heat production in the body of the
resting rat, A1l values shown in Table )| were increased by 30% to
compensate for in vitro inactivity (Field et al, 1939; Martin &
Fuhrman, 1941), converted to units of heat, and displayed in
Table 2.

TABLE 2 - Partition of Heat Production During Rest.

Organ Mass Metabolism Heat 1
(9) (W/kg) (W)

Brain 2.1 31 0.07 4
Kidneys 2.4 34 0.08 4
Heart 1.0 21 0.02 1
Liver 15.2 14 0.21 1"
Lungs 1.6 5 0.01 1
Muscle 129.5 5 0.65 34
Diaphragm 1.0 13 0.01 1
Gut 1. 8 0.14 7
Spleen 0.7 B 0.0 1
WAT 33.0 0.9 0.03 2
BAT 2.5 14 0.04 2
Testes 2.8 B 0.02 1
Skeleton 22.0 1 0.02 1
Skin 35.4 3 0.12 6
Remainder 59.3 8 0.47 24
WHOLE RAT 330.0 5.57 1.90 100

It can be noticed in Table 2 that organs such as the brain,
kidneys, and heart have a very high metabolic rate (21-34 W/kg),
whereas white adipose tissue and the skeleton have a very low
metabolic rate (1 W/kg). The average (whole animal) metabolic rate
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is about & W/kg. It should be pointed out that skeletal muscle has
a relatively low metabolic rate (5 W/kg) but constitutes such a
large part of the body (130 g in a 300 g rat) that its total heat
production is very high (341 of the total heat produced by the
animal),

During exercise, the activity of the skeletal muscles, the
heart, and some other organs increases dramatically. The skeleta)
muscles are specially important because of their large mass.
Active muscles can increase their metabolic rate 5-8B times above
resting levels (Spriet et al, 1985; Stainsby & Otis, 1964). Since
whole organism metabolism also increases about 5-8B times, at
least in humans (Nielsen, 1970), the partition of heat production
does not seem to be affected by exercise. Further research on rat
exercise is clearly necessary to elucidate this question.

Cold exposure causes an elevation of metabolic rate,
especially in cold adapted animals. Based on the data on blood
flow rate to different organs, it has been suggested that 60% of
the increase in heat production is due to brown adipose tissue
(Foster & Frydman, 1978), Assuming a twofold increase in whole
animal metabolism, brown adipose tissue could be responsible for
23% of total body heat production in a cold environment rather
than the meager 2% in thermal neutrality. This would be a
significant change in the partition of heat production.
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