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Abstract

The aim of this paper is to investigate the ascription of probabilities in a causal
model of an episode in the history of science. The aim of such a quantitative
approach is to allow the implementation of the causal model in a computer, to
run simulations. As an example, we look at the beginning of the science of
magnetism, “explaining” — in a probabilistic way, in terms of a single causal
model — why the field advanced in China but not in Europe (the difference
is due to different prior probabilities of certain cultural manifestations). Given
the number of years between the occurrences of two causally connected ad-
vances X and Y, one proposes a criterion for stipulating the value pY/X of the
conditional probability of an advance Y occurring, given X. Next, one must
assume a specific form for the cumulative probability function pY/X(t), which
we take to be the time integral of an exponential distribution function, as
is done in physics of radioactive decay. Rules for calculating the cumulative
functions for more than two events are mentioned, involving composition, dis-
junction and conjunction of causes. We also consider the problems involved in
supposing that the appearance of events in time follows an exponential distri-
bution, which are a consequence of the fact that a composition of causes does
not follow an exponential distribution, but a “hypoexponential” one. We sug-
gest that a gamma distribution function might more adequately represent the
appearance of advances.

Why did the history of a scientific field follow a certain path and not another?
The answer for this kind of question usually involves the identification of a set
of historical causes. Causal relations, however, may be quite complex, and one
way of expressing this complexity is by means of probabilistic causal models. The
present paper is part of a project for investigating how the history of science may
be expressed in terms of such models. The problem to be addressed is how to
compute probabilities for an overall process, given the probabilities for interme-
diate steps, and how to estimate the probabilities of such intermediate steps.
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1. Causal Model for an Episode in the History of Science

In a previous work (Pessoa 2005), an overview was presented of the approach to
the history of science based on causal models.1 This project started out as an ex-
ploration of a method for postulating counterfactual histories of science (Pessoa
2001), and led to the development of a theory of science based on general units
of knowledge, which may be called “advances” (or “achievements”, or “contribu-
tions”). Advances are passed on from scientist to scientist, and may be seen as
“causing” the appearance of other advances. This results in networks which may
be analyzed in terms of probabilistic causal models, which are readily encodable
in computer language.2

Consider the following representation for the steps leading to the develop-
ment of a rudimentary form of the magnetic compass (Fig. 1). This is a modifi-
cation of the model presented in Pessoa (2005), but in which no calculations of
overall probabilities were given. In a single diagram, consisting of advances con-
nected by causal relations, one attempts to account for two independent factual
histories of the early science of magnetism, those occurring in China and Eu-
rope. According to this reconstruction, the difference between the two histories
was due mainly to the strong presence of divination techniques in China (Need-
ham 1962). Although such cultural manifestations associated with the lodestone
(magnetic ore) were also present (to a lesser extent) in Europe, for instance in
Samotracia,3 we have simplified the situation by considering that the prior proba-
bilities for the divination techniques B and E in Europe were zero, while in China
they were 1.

The path leading to the first magnetic compass, the lodestone spoon compass
(F), started from the discovery and exploration of the “lodestone effect” (A) (the
mutual attraction of magnetic ore and the attraction of iron to magnetic ore)
which occurred both in China and in Europe. However, in China there was a
divination technique done with a greased iron needle floating in water (B), which
led to a variation involving a floating lodestone needle (C). With this practical
arrangement, the discovery that the lodestone needle aligns along the North-
South direction (D) was highly probable, and in fact occurred in China around
the beginning of the Christian Era, but not in the West. After this discovery, the
development of a rudimentary compass (F) was a small step.

Causal connections are represented as probabilistic relations, the values of
which are a rough estimate of the probability for the occurrence of an effect in
a typical reference time interval, in this case taken to be Tref = 400 years. A
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Figure 1: Simplified causal model for the beginning of the science of magnetism. The
difference between the developments in China and in Europe, up to around the 5th cen-
tury, are accounted for by different prior probabilities for divination techniques. Proba-
bilities with three significant digits were calculated from the empirical time span between
the advances in China, according to eq. (4) and also eq. (6), as explained in section 8.
The probabilities with only one significant digit were guesses.

certain advance such as D may be represented with two arrows leading to it: this
expresses a disjunction of causal paths, i.e., the effect may arise from either one
of two different paths. A conjunction of causes is represented by lines flowing to
the symbol “&”. The succession of two causal relations, for example A → D
and D → F, will be called composition of causes, resulting in the overall relation
A → F.

The probability for an event F, given a set of causes such as A, B, and E,
has been expressed for the reference time interval Tref . What would the expres-
sion for pT(F/A,B,E) be if the time interval T chosen were different from the
reference time?

2. Probability as a Function of Time

To treat this problem, we will change the notation, and write pY/X(t) for the
conditional probability of occurrence of a generic advance Y up to the time t
after the occurrence of an advance X. How should pY/X(t) be expressed as a
function of time t?

First of all, this probability pY/X(t) should increase monotonically with t (i.e.,
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it should never decrease with t). Drawing an analogy with a fisherman in a pond,
after he throws his bait, the probability of catching a fish in the next hour cannot
be smaller than the probability of catching a fish after only five minutes. Another
obvious restriction on pY/X(t) is that it can never be greater than 1 (Fig. 2b).

One simple way of expressing the amount of time until some specific event
occurs is by means of an exponential distribution: f(t) = x · e−xt. This is used in
physics, for example, for the law for radioactive decay. If there are initially N0

“parent” nuclei which decay independently, with the same probability, then after
a time t there will be N0 · e−xt nuclei, where x is the decay constant or rate of the
distribution. On the other hand, assuming that the end product of the decay is a
stable nucleus, the number of such “daughter” nuclei will increase as N0 ·(1−e−xt)
(see Evans 1955, ch. 15).

The probability for the appearance of a single daughter nucleus is obtained
by taking this curve of growth with N0 = 1:

pY/X(t) = 1 − e−xt. (1)

Figure 2 shows a graph of this cumulative probability function, which is the time
integral of the distribution function f(t) = x · e−xt, shown in Figure 2b.

In most of this paper, we will assume that, in the history of science, the prob-
ability of an effect following a cause will obey such a law. With this assumption,
we can calculate what the probability of an effect will be for any interval of time
T, by simply computing pY/X(T). Such a supposition of exponential decay may
be, of course, criticized, and we will consider some of its drawbacks in section 8.

Conversely, if one stipulates a certain pY/X for a reference time interval T,
then the decay constant is given by:

x =
−1
T

ln(1 − pY/X). (2)

3. Features of the Exponential Distribution

In the case of radioactive decay, there is a large number of nuclei undergoing the
same process at the same time. How can this be applied to the case of histo-
ries of science, which usually occur only once (although independent discoveries
happen quite frequently)? One strategy is to consider a set or “ensemble” of pos-
sible histories of science, all starting at a specific date (usually involving the real
situation of science at a certain date in the past). To simplify matters, we might
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consider 100 such possible histories, one of them our actual history, the other
99 counterfactual. We will not go into the details here of how to conceive such
an ensemble (see Pessoa 2006), but the idea is that the counterfactual worlds
could have arisen out of fortuitous events, if a certain scientist (such as Carnot)
had not died at a young age, or if a seminal paper had not been ignored (such
as Waterston’s), or if a bright individual had become a musician (as could have
happened with Einstein).

As an illustration, consider two advances X and Y, such that the appearance
of the first brought sufficient conditions for the discovery of Y (this is of course a
simplification, since there are always many other relevant causes and conditions).
This could be the case of the development of a scientific instrument, such as the
compound microscope (X), developed by J. J. Lister in 1826, which led to the
discovery of cellular structures in all plant tissues (Y), by M. Schleiden, in 1838.
The “empirical” time span elapsed between X and Y is 12 years.

Our ensemble of possible histories of science is constructed from the actual
situation, right after X was obtained, in 1826. In the 100 possible histories, would
Y appear after 12 years in exactly every one of them? Probably not: there would
be a distribution of possible histories, according to the time elapsed between X
and Y, and we might take 12 years as a mean value T (in the lack of further
information).

Since we are assuming that X is sufficient for the production of Y, the latter
could have appeared immediately after X. In fact, the assumption of exponential
distribution, i.e., of eq. (1) as our cumulative probability function, implies that the
year in which Y would appear the most, in the ensemble of possible worlds, would
be the first year, then a few less in the second year, and so forth. This is repre-
sented in the exponential decay curve of Fig. 2b, where a histogram represents
the distribution of the appearance of Y in the hundred worlds.

There is something counterintuitive in the exponential distribution, since, in
our world, Y appeared after twelve years, and one would guess that the year in
which most “decays” happen would be around twelve and not one year. A better
distribution function might be one with a hump around its mean value. An
example of this is the so-called gamma function, defined by two parameters x and
n, according to:

fn(t) =
xn tn−1 e−xt

(n − 1)!
. (3)

For n = 1, the distribution reduces to the exponential case f1(t) = x · e−xt seen
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Figure 2: (a) Cumulative probability function pX/Y(t), for the exponential case. (b) Ex-
ponential distribution function f(t) of 100 worlds (represented by rectangles) according
to the year of occurrence of the relevant event in each one. The mean T is taken to
be 12 yrs., the empirical time span of the example mentioned in the text. In half of the
worlds the event occurs before the half-life T1/2.

above. The cases in which n = 1, 2, 3, 4 are presented in Fig. 3a, and a sketch
of a gamma-like distribution is shown in Fig. 3b (for other details, see Pessoa
2007). The disadvantage of such a distribution is that two parameters are needed
to define it. Only in situations involving two or more independent discoveries
would one have enough data for roughly estimating the standard deviation of
the underlying distribution function.

In this paper, for simplicity, we will consider calculations with the exponential
decay curve of Fig.2b. It represents a situation in which the probability of an
event occurring in a certain interval of time T (assuming it has not yet occurred)
is constant, irrespective of the instant t chosen. This is related to the curious
feature of the system being “memoryless”: if after, say, five years we verify that
Y has not appeared, the probability function for its appearance will be the same
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Figure 3: (a) Probability densities fn(t) as a function of xt, according to the gamma
distribution (eq. 3), for n = 1, 2, 3, and 4. (b) Example of a gamma-like distribution, with
the indication of the mean and the standard deviation.

exponential curve, initiating at this new date. In other words, the fact that an
effect has not appeared after five years does not increase the probability of its
appearance in the following year; there is no memory of the time that has elapsed
(Ross 1997, p. 237).

This may be illustrated by the example of 100 fishermen who set out to catch
fish in a pond. Every time one of them catches a fish, he has a picture taken,
throws the fish back into the water and leaves. In this way, the number of fish
is constant, and so the probability of catching them is also constant (the fish don’t
learn to avoid baits). Let us suppose that the probability of catching a fish in ten
minutes is 10%. After the first ten minutes, roughly 10 of the fishermen make a
catch and leave. There are now only 90 fishermen, and in the next ten minutes
around 9 of them catch a fish. They leave, and we are left with 81 fishermen.
After 10% of them make a catch in the next ten minutes, roughly 8 leave. Draw-
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ing a graph similar to Fig. 2b, one obtains the exponential distribution, until the
last fisherman is left. This unlucky chap still has the same probability of 10% of
making a catch, as he did in the beginning! Exponential distributions represent
“memoryless” processes, i.e., ones for which the probability of an event occurring
is constant.

In causal models of the history of science, an exponential distribution applies
well to discoveries which arise from the exploration of objects in a certain domain,
such as planets in the sky, or antibiotics in the soil. An astronomer who sets out
to find a missing planet might have the same probability of finding it as someone
who has already been looking for it for a few years. But, of course, in science
this is an exception: usually a long chain of small advances is a prerequisite for
a major breakthrough. A long composition of exponential decays is not itself an
exponential decay, but something closer to a gamma distribution (more precisely,
to the “hypoexponential” distribution, to be mentioned below, in section 5).

4. Estimation of the Probability Function

Looking at the history of science, how should one proceed to associate probabil-
ities to the appearance of an advance Y? First, one should evaluate what causes
contributed to its occurrence, and construct a causal model for advance Y. In
the simplest case, consider a situation in which a single advance X is sufficient
for producing Y, as in the example given in the previous section.

The time span between X and Y was assumed to be 12 years. We will call this
the empirical time span τ of the causal process X → Y. Whatever the probability
distribution of the underlying process, the best guess is that τ corresponds to the
time average or mean T of the occurrences of the event in the possible worlds.
This is different from the half-life T1/2, which is the time it takes for the event
to take place in half of the worlds (see Fig. 2). For the exponential cumulative
probability function, the mean is simply the inverse of the decay constant: T =
1/x (Ross 1997, p. 236). So equating the mean T and the actual time span τ, one
may estimate pY/X(t), according to eq. (1), by taking:

x = 1/τ. (4)

Such a result is independent of any hypotheses concerning the typical refer-
ence time interval Tref of an historical setting, which is a nice feature. In our
previous example, for τ = 12 yrs., one finds x = .083 yrs.−1. For estimating
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probabilities,4 however, one must fix a typical time interval as a reference. For
advances in 19th century European physics, such an interval may be taken to be
10 years. Then, using eq. (1), one obtains pY/X(10 yrs.) = .565.

5. Composition of Causes

Given that X causes Y with a certain probability pY/X(T) — measured, as we have
just remarked, for a typical time interval T — and that Y causes Z with probability
pZ/Y(T), what is the probability pZ/X(T) associated with the composition of causes?

One assumes eq. (1) and the analogous equation for the second process:
pZ/Y(t) = 1 − e−yt. The situation may be represented by:

X — — — →1 − e−xt
Y — — — →1 − e−yt

Z .

We present the mathematical developments elsewhere (Pessoa 2007), in or-
der not to burden the reader. This problem is analogous to radioactive decay to
an unstable state Y (Evans 1955, ch. 15). The result pZ/X(t) for the composition
(or convolution) of these two causes is:

pZ/X(t) = [x · pZ/Y(t) − y · pY/X(t)]/(x − y). (5)

This may be generalized to a composition of any number of causes, and the
result follows the so-called “hypoexponential” distribution (Ross 1997, p. 246–
8), also called the “Bateman equations” in nuclear physics (Evans 1955, ch. 15),
of which the gamma distribution is the special case for equal decay constants.

6. Disjunction of Causes

A certain advance may be obtainable by more than one causal path. For example,
we might have the following independent causal relations: X → Z, with probability
pZ/X(t), and Y → Z, with pZ/Y(t). What is then the probability of the disjunction
of possibilities pZ/X,Y(t), that is, of the occurrence of either X → Z or Y → Z,
given that both X and Y are present at a certain initial time?

Y

1 − e−xt

Z

1 − e−yt

X

����

�����
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This problem is analogous to the probability of throwing two die and obtain-
ing at least one “six”. There is 1/6 of a chance of obtaining a “six” with the
first dice, 1/6 for the second, but after adding the probabilities one must subtract
1/36 because the throw with two “sixes” was counted twice: the result is 11/36.

The probability in the case of a disjunction of causal paths, in which each
cause is sufficient for the production of the effect, with probabilities pZ/X(t) and
pZ/Y(t), is therefore:

pZ/X,Y(t) = pZ/X(t) + pZ/Y(t) − pZ/X(t) · pZ/Y(t). (6)

7. Conjunction of Causes

The case in which two causes are sufficient only in conjunction, for the production
of an effect, cannot be related to the probabilities of the single conjuncts, since
each of these is by itself insufficient (probability 0). In this case, of course, the
joint probability pZ/X,Y(t) = 1 − e−zt has to be given.

Y

1 − e−zt Z

X
�
�& �

�
�

��

�
�

��

Consider now the situation in which the conjuncts X and Y are not assumed
to be given, but have probabilities pX and pY of occurring, with nothing else
known:

�

�pX

pY
Y

1 − e−zt Z

X
�
�& �

�
�

��

�
�

��

In this case, the original joint probability pZ/X,Y(t) must be multiplied by the
probability that both X and Y occur, which is pX · pY.

The situation in which X and Y arise from previous causal processes with
exponential cumulative probability functions is more complicated, but may be
readily solved by integration (see Pessoa 2007).
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8. Example of Computation of Probabilities

The aforementioned results may be used to compute the overall probability pT(F)
associated to Fig. 1, for the case of China and Europe. The reference time inter-
val is taken to be Tref = 400 years. We have reverted to the notation used in
section 1.

In Fig. 1, the probabilities with three significant digits were calculated from
the empirical time span τ between actual discoveries (section 4). Advance A
corresponds to the report of the lodestone effect made by Pu Wei in 220 BCE,
while advance C occurred with the report of the floating lodestone needle by Liu
An in 120 BCE (Needham 1962, pp. 232, 281). With this data, one may use
eq. (2) and (4), with τC/A = 100 years, to calculate a probability .982. However,
care must be taken to interpret this. Notice that there are two possible paths
arriving at C, one involving the set of advances {A,B}, while the other path
involves only A, or more precisely, A and not B: {A,¬B}. What is calculated from
the empirical time span is the disjunction of these two paths: p(C/A) = .982,
which we assume obeys an exponential distribution. In Fig. 1, what is represented
are the isolated disjuncts, p(C/A,¬B) = .1 and p(C/A,B) = .980. The value of
the latter is calculated with eq. (6).

The same analysis applies to the occurrence of advance D and of F. In the first
case, we assume that the directive property of lodestone was discovered in the
year 0 of the Christian Era, so that there is an empirical span (not so empirical!)
of 120 years between the occurrence of C and D in China. The probability of
the disjunction is p(D/A) = .964, and since we guessed that p(D/A,¬C) =
.2, therefore p(D/A,C) = .955, as shown in Fig. 1. The final case involves
an empirical time span of 83 years between the estimated occurrence of D and
Wang Chung’s description of the rudimentary compass, the lodestone spoon used
with the diviner’s board, in 83 CE (Needham 1962, pp. 233, 237, 261–2). The
probability of the disjunction gives p(F/D) = .992, while p(F/D,¬E) = .1 and
p(F/D,E) = .991.

In order to calculate the overall probability for the invention of the rudi-
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mentary compass in China, we should use the probabilities for the disjuncts,
mentioned in the preceding paragraphs and calculated from the empirical time
spans in China. Furthermore, one assumes the prior occurrence of A and B:
pChi(A) = pChi(B) = 1. Thus, the probability of C is simply pChi(C/A) = .982.
The composition with pChi(D/A,C) = .964 may be computed with eq. (5), where
the decay constants are the inverse of the empirical time spans (eq. 2). The re-
sult for the composite probability is: pChi(D/A) = .88 (which is less than the
simple product of the probabilities). This result for pChi(D/A), however, will not
be used for calculating pChi(F), since one must compute an overall integral (the
composite distribution is not exponential).

To proceed, we assume pChi(E) = 1, which simplifies the calculation of
pChi(F/D,E). The overall probability may thus be computed by calculating the
composition of three causes A → C → D → F, using an expression that we have
not presented here. For the probabilities pChi(C/A) = .982, pChi(D/C) = .964,
and pChi(F/D) = .992, one obtains pChi(F) = .76 for the probability of the com-
pass being developed in China in the span of 400 years after the discovery of the
lodestone effect.

In Europe, we assumed pEur(A) = 1, and pEur(B) = 0. To compute pEur(D/A),
one must consider a disjunction of paths, pEur(D/A,¬C) or pEur(D/A,C). The
first is simply .2, while the second is calculated by composing probabilities .1 and
.955, according to eq. (5), which gives pEur(D/A,C) = .07. The disjunction
(eq. 6) furnishes pEur(D/A) = .26. We will simplify the estimate and assume
that pEur(D/A) corresponds to an exponential distribution. Furthermore, since
pEur(E) = 0, eq. (5) may be used to calculate the composition A → D → F,
with pEur(F/D) = .1. The final probability is roughly pEur(F) = .02, a quite low
estimated probability for the compass being developed in Europe after 400 years
of the discovery of the properties of magnetic ore.

9. Discussion

In this way, a single causal model “explains” two independent paths of science.
Of course, the example is completely ad hoc, but it encapsulates Needham’s in-
terpretation of why the science of magnetism developed in such different ways in
these two possible (but factual) worlds. Causal models offer an alternative way
of encoding the information painstakingly obtained by historians of science. The
use of numbers does not reflect a philosophical assumption that such numbers
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really exist out there. The aim of such a quantitative method is to represent the
history of science in a computer, so that simulations of the evolution of science
may be undertaken. Certain arguable philosophical assumptions have been made,
such as the existence of units of knowledge and of causal connections between
them, but for a discussion of these the reader is referred to Pessoa (2005).

Notice that the partial result obtained for pChi(D) = .88 could not by itself
be used for finding pChi(F). Probabilities were computed in a “holistic” way, in-
tegrating over all exponential cumulative functions. To proceed in a stepwise
manner, one would have to consider not only the partial probabilities, but also
the convoluted cumulative functions, which are not exponential.

This problem also raises an objection against modeling the appearance of ad-
vances by means of an exponential probabilistic function, since in reality the
occurrence of any advance is the result of complicated chains of causal events.
For this reason, a function resembling the gamma distribution mentioned in sec-
tion 3 would be more adequate. It is plausible to assume that certain types of
advances follow approximately an exponential distribution, such as discoveries
arising from the exploration of new territory. Other advances, such as the solu-
tion of puzzles involving many ingredients, which require intermediary steps, are
surely not adequately modeled by such a memoryless distribution.

One could hold the view that there exist elementary causal connections, which
do not arise from the composition of smaller causal links. They could be recog-
nized by obeying an exponential distribution, as is the case of radioactive decay
(which nonetheless may in fact deviate from the pure exponential). The realist
metaphysical position that all causal connections arise from the composition of
elementary or “atomic” exponential causal links may be called “causal atomism”.

In our case study, we have modeled the causal relation between the discovery
of the lodestone effect and the construction of the first rudimentary compass. If
the intermediary steps were ignored, and the relation were considered exponen-
tial, the empirical time span of 303 years in China would lead to a probability
(relative to a reference interval of 400 years) of .733 (using eqs. (1) and (4)),
which is different from the value .758 obtained by taking into consideration in-
termediary steps.

The justification for the use of exponential functions is their simplicity (es-
pecially adequate for integration) and our ignorance of the underlying chain of
causal processes. Still, the resulting formalism is quite complicated to be applied
to large causal networks, which would require one big overall integral. Maybe
the use of good computers, numerical integration, and approximation methods
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may overcome this problem, not only for the exponential distribution but also for
the gamma distribution. But the big advantage of the exponential distribution
is that we need only one parameter (the empirical time span) to determine (as
our best guess) the exact form of the distribution, while for the gamma case (or
any Gaussian looking distribution) we need two parameters (mean value and the
standard deviation).

Further work has indicated that hypotheses concerning the exact form of the
distribution function may be unnecessary, at least concerning the composition of
causal processes, since the mean value of the composition of any two distributions
is the sum of the mean values of each distribution, and the square of the standard
deviation of the composition is the sum of the square of the standard deviations
of each distribution. This may greatly simplify the computations, at the price of
not obtaining precise values for the calculation of probabilities.
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Resumo

O objetivo deste trabalho é investigar a atribuição de probabilidades em um
modelo causal de um episódio da história da ciência. O objetivo desta abor-
dagem quantitativa é permitir a implementação do modelo causal em um com-
putador, para que se possam rodar simulações. Como exemplo, olhamos para
o nascimento da ciência do magnetismo, “explicando” — de uma maneira pro-
babilista, em termos de um único modelo causal — porque o campo avançou
na China mas não na Europa (a diferença é devida a diferentes probabilidades
a priori atribuídas a certas manifestações culturais). Dado o número de anos
entre as ocorrências de dois avanços X and Y conectados causalmente, propõe-
se um critério para estipular o valor pY/X(t) da probabilidade condicional de
um avanço Y ocorrer, dado X. Além disso, deve-se supor uma forma especí-
fica para a função de probabilidade cumulativa pY/X(t), que tomamos como
sendo a integral temporal de uma função de distribuição exponential, como é
feito na física de decaimentos radioativos. Mencionam-se regras para o cálculo
de funções cumulativas para mais do que dois eventos, envolvendo composi-
ção, disjunção e conjunção de causas. Consideramos também os problemas
decorrentes da suposição de que o surgimento de eventos no tempo seguiriam
uma distribuição exponencial; tais problemas são conseqüência do fato de que
a composição de causas não segue uma distribuição exponencial, mas sim uma
“hipo-exponencial”. Sugerimos que uma distribuição gama pode representar
mais adequadamente o aparecimento de avanços.
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Notes
1 A causal model may be represented by a structural diagram (a directed acyclic graph),
such as that of Fig. 1, where each node stands for a variable and each arrow represents
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the causal dependence between variables. More rigorously (Pearl 2000, p. 203), a causal
model is a mathematical description of a set of variables vi, by means of a set of func-
tions fi, the arguments of which are other endogenous variables ai and also exogenous
variables ui (represented in a stochastic way): vi = fi(ai, ui). Alternatively, one may use a
probabilistic representation that makes use of Bayes’ theorem, in order to compute con-
ditional probabilities in light of new evidence. The interest in causal models, in the last
twenty years, arose from the problem of inferring causal relations from a collection of
data, which prima facie furnishes only correlations, and from appropriate experiments of
intervention. In the present study, one cannot use most of the results developed in this
field, since history usually happens only once (except in cases of independent discover-
ies) and it is not possible to intervene in it. We therefore employ only the notation that
is used in causal models and the analysis of certain structures which form in a network
of causal relations.
2 We have stored historical information and run some preliminary simulations using the
“SCHEME” programming language.
3 It is worth noting that there is strong evidence that the first to discover the directive
property of lodestone were the Olmecs, in Central America, before 1000 BCE (Carlson,
1975).
4 At this point, we might try to clarify the interpretation of probability being adopted in
this methodology. The strategy of imagining an ensemble of similar worlds, and con-
sidering the frequency with which each time span between two advances would occur,
could suggest a frequentist interpretation of probability. However, such worlds are not
observed but only imagined, so in fact the probabilities being postulated seem to follow a
subjective interpretation. This problem is related to that of the interpretation of causality
being adopted. As a matter of fact, the definition of causality that has been assumed is
counterfactual: “A is cause of B, if A and B occurred, and if the absence of A would alter
the probability of occurrence of B”.
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