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Abstract

I discuss some questions of quantum physics, for instance the validity and lim-
itations of the basic language of set theory to deal with problems related to
elementary particles. I also present a sketch of a formalization of a “meta-
physics of structures”, which might be useful for a kind of “ontic structural
realism”, and briefly review the concept of quasi-truth, which underlies my
way of understanding scientific theories and the scientific activity.

1. Introduction

This paper constitutes a summary of some aspects of my work on the founda-
tions of quantum physics, and especially results accomplished in the last three or
four years. Most of it has not appeared in printed form. Many colleagues have
helped me in this endeavor, particularly O. Bueno, I. Costa e Silva, F. A. Do-
ria, D. Krause, A. A. M. Rodrigues, and A. Sant’Anna; to them go my warmest
thanks.

I shall begin by stating a general principle, which underlies the whole dis-
cussion. The basic language L of set theory (although not necessarily specific
systems of set theory like Zermelo-Fraenkel, von Neumann-Bernays-Gödel, . . .)
is a universal language. Scientific activity, and more generally rational activity,
is essentially conceptual in nature, that is, it can be viewed as an interplay of
concepts. But concepts have extensions, so in certain sense science is correlated
with L.

Of course, there is a vast repertoire of “interpretations” of L; sets can be seen
as extensions of concepts, as sets in the sense of von Neumann hierarchy, as
Boolean valued constructs, as probabilistic items, as members of a forcing model,
as structures or relations, etc. Sets may be employed with items which are not
sets, for example physical bodies and collections of concrete objects. In L one
even simulate category or topos theory. Indeed, any topos can be “translated”
into a usual or strong set theory.

In spite of this wealth of systems and interpretations, most of the theoretical
discussion about the foundations of physics can be developed inside relatively
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simple systems of set theory, like Zermelo-Fraenkel, perhaps reinforced by extra
axioms or by new kinds of objects. At any rate, the basic notions of mathematics
or of physics, at least theoretical physics, may be treated inside an appropriate
set theory. It is in this sense that I shall assume that a set theoretical language
underlies, in principle, all physical theories.

However, the simple picture just delineated will perhaps be challenged by the
evolution of quantum physics, in particular in connection with quantum logic
and the indiscernibility of elementary particles, topics to which I shall make ref-
erence below.

2. Quantum physics

I shall distinguish, from a theoretical standpoint, non-relativistic quantum me-
chanics (QM) from quantum field theory (QFT); QFT is the relativistic coun-
terpart of QM. A good introduction to the first is Dirac 1958 and Sakurai 1985,
and the second is treated in Cottinghan & Greenwood 2007 and Auyang 1995;
these books contain extensive references to the pertinent literature.

In its usual formulation, the central mathematical tools of QM are Hilbert
space and Schrödinger equation. The underlying space and time are classical,
pre-relativistic. Among other restriction, there is no natural place for creation
and annihilation of particles, and neither for spin; they are introduced in the
theory in a somewhat ad hoc fashion. QM is basically a mechanics of particles
applicable to electrons and, more generally, to fermions. As a mechanics of par-
ticles, the Lagrangian and the Hamiltonian formulations have important role, as
it happens in analytical mechanics.

QM presents numerous philosophical problems concerning its interpretation,
the foremost being the so called measurement problem (see Auyang 1995). It has,
notwithstanding, a vast number of applications and empirical confirmations, suc-
cessfully explaining many traits of molecular structure and Mendeleev periodic
table of elements, as well as contributing in a fundamental way for the advance
of electronic technology.

There are many alternative systematizations of quantum mechanics. How-
ever, the standard axiomatic procedure ia to assume certain general postulates,
for instance Schrödinger equation, and to treat each particular quantum system
(say the case of molecular structure) by the means of extra especial assumptions
and approximate methods. In other words, the applications are handled via par-
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ticular models or structures that have to obey the central postulates. The main
point here is that it would not be appropriate to envisage an axiomatic system-
atization of QM as a set of sentences (of a given language) closed by logical infer-
ence rules. In fact, this is also true of classical mechanics and of general relativity.
In the case of the latter theory, there are also some general postulates (say, the
pseudo-riemannian structure of space-time and Einstein field equations), but the
physical predictions are obtained with the help of specific models; all such models
are equally allowed by the general theory, but their importance and validity vary
according to the system under study and the physical approach adopted. Rela-
tivists even investigate theoretical spacetime geometries that seem to have little
to do with the observed universe, like Gödel’s model.

QFT was born when Dirac obtained a relativistic version of Schrödinger
equation, which was latter interpreted as a field equation. Dirac equation, to-
gether with the operation of quantization of the fields, originated quantum elec-
trodynamics (QED), the first quantum field theory. The so-called problem of in-
finities, linked to the perturbation methods adopting to compute physical quan-
tities, was systematically handled by the device of renormalization, developed
mainly by Feynman, Tomonaga, Schwinger, and Freeman Dyson. Renormaliza-
tion is not, however, a mathematically well-defined procedure. It is rather a set
of thumb rules to deal with infinite quantities, their justification being on physi-
cal (empirical) grounds. Even Feynman and Dirac had their misgivings about its
systematic use in quantum physics.

QEDconcerns the electromagnetic interaction. There are two other branches
of QFT: one is devoted to the weak interaction (combined with electromag-
netism) and another, called quantum chromodynamics (QCD), studies the strong
interaction. Just like in other fundamental domains of physics, in QFT theory for-
mulation combines basic axioms with the elaboration of special models or struc-
tures, in any case satisfying the axioms that are initially accepted.

QFT is the theoretical framework of the so-called standard model of particle
physics (see Cottinghan & Greenwood 2007). This model, in fact, gives us a
mathematical picture of the weak, strong and electromagnetic interactions be-
tween leptons and quarks, which, together with the gauge bosons, constitute its
elementary particles.

The standard model is an extremely successful theory from the experimental
viewpoint. From a theoretical perspective, however, it lacks the uniform formal
elegance of general relativity, and the electroweak and strong interactions are
treated as separated theories, although physicists are confident that these inter-
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actions ought to be different manifestations of a single underlying force. More
importantly, despite many efforts for more than a half of century, gravity remains
theoretically irreconcilable with the basic postulates of quantum physics; it is
treated separately by general relativity, which is not a quantum theory. A quan-
tum theory of gravity remains elusive.

One curious point is that one may have the impression that particles are the
basic ingredients of QFT. Nonetheless, this is not so. For example, Auyang writes
that,

So far we have not introduced the notion of particles. Particles in field
theories are nothing like tiny pebbles; they are normal modes or quanta
of excitation for the field. To get some idea of them, consider the motion
of a violin string with length L. Since the ends of the string are fixed,
only those wavelengths of the vibration that are integral divisions of 2L
are allowed. These wavelengths correspond to the harmonic frequencies
. . ., each of which is a normal mode of the string. (Auyang 1995, p. 51)

Auyang notes that normal modes have properties that make them fundamen-
tal in the analysis of vibrations, waves, and fields. She also asserts that,

Normal modes, field quanta, and particles are good concepts for describ-
ing continuous systems only when the coupling between then is negligi-
ble. The condition is not always satisfied . . . when quantum fields inter-
act, quanta can be excited and deexcited easily so that the static picture
of free fields depicted above no longer applies. That is why field theories
say particles are epiphenomena and the concept of particle is not central
to the description of fields. (1995, p. 53)

According to the prevailing interpretation of Dirac and Klein-Gordon equa-
tions, as well as other basic equations of QFT, they are field equations. It seems
impossible to treat them as referring to free particles. In other words the ontology
underlying QFT consists of fields. Notwithstanding this, the language of parti-
cles is relevant in many cases, particularly in connection with the description of
some results of experiment and in the handling of quantum statistics; this is so
because the regions of interaction of the fields are often very small (in a suitable
sense), and outside of them, the description in terms of free fields (whose basic
excitations are described as particles) gives a good picture of phenomena.

It is very important to insist on the fact that QFT has a more or less definite
domain of application. Thus, when some questions of QED involve situations
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of very high energy, this causes some theoretical difficulties, for instance Landau
ghost, which is an inconsistency in the mechanism of renormalization at that
level of energy. The same occurs in other QFT’s.

From a logical standpoint, there is no guarantee that QFT is consistent. Any-
how,if it is not so, taking into account its intrinsic relevance, we might consider
changing its subjacent logic into a paraconsistent one. On the possible inconsis-
tency of QED, Jaffe wrote that,

Yet in spite of these great successes, we do not know if the equations
of relativistic quantum electrodynamics make mathematical sense. In
fact, the situation poses a dilemma. As a consequence of renormalization
group theory, most physicists today believe that the equations of quantum
electrodynamics in their simple form are inconsistent; in other words, we
believe that the equations of electrodynamics have no solution at all!!
(Jaffe 1999, p. 136)

In spite of these caveats, QFT is likely to remain a fundamental tool in the
domain of physics to which it can be applied, even if inconsistent, similarly to the
case of Bohr atom. I shall explore this topic below (see da Costa et al. 2007, and
Appendix B).

3. Quasi-truth

The traditional conception of truth as correspondence between sentences (of a
fixed language) and reality is of the utmost importance. It has a long history and,
from a certain perspective, can be said to have been systematized and formalized
by Tarski in the 1930s (Tarski 1983). It is well known that Tarski’s definition
of truth has numerous applications in logic, mathematics, and the philosophy of
science.

But it is difficult to adapt the Tarskian definition to all physical theories, es-
pecially to QFT. In fact, we know that a theory such classical mechanics can not
correspond literally to reality However, rockets are sent to the Moon successfully
through calculations carried out in this framework, so there is a sense in which
it is true. The same happens with QM and QFT, that reflect a limited scope of
reality or or our experience. The picture they present is partial and focussed on
experience. On the other hand, as it is clear by now that theories may be incon-
sistent, and yet significant and rich. Thus, we need a new perspective on truth,
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not incompatible with the common one, for instance à la Tarski, but that will be
more adapted to the present day state of physics (and of science in general).

The most basic feature of a theory is that it must save the appearances in
given domains of experience and of our environment. Such conception of truth
has been already developed and applied in several situations. It is called quasi-
truth (or, sometimes, pragmatic truth; since I don’t want to get into questions of
exegeses, “quasi-truth” is preferable). Quasi-truth was heuristically motivated
by the ideas of philosophers adept of the school of pragmatism, such as William
James, Mead and specially Peirce. The first detailed exposition of the theory
of quasi-truth appeared in Mikemberg, da Costa, & Chuaqui 1986, and, among
the various works on the subject, I mention da Costa 1989, da Costa and French
2003, and da Costa & Bueno 1998. Quasi-truth generalizes the standard Tarskian
definition of truth.

A good physical theory must be quasi-true in certain given domains of knowl-
edge (see Appendix B). For example, classical mechanics can cope with moving
bodies whose velocities are small as compared with the velocity of light and whose
masses are not too large, having recourse to classical, non-relativistic concepts of
space and time. QM, as I noted, has also its limitations and domains in which it
is quasi-true. This is the case of all physical significant theories, hypothesis and
laws.

What is then the objective of a theory? It is, above all, the systematization of
part of our empirical knowledge of given domains, being quasi-true in these do-
mains. Normally, we have a domain D and employ an appropriate mathematical
species of structures E (Bourbaki 1968) to deal with D from a theoretical stance.
Obviously, there must be some rules or processes with the help of which E can
make contact with the empirical part of D. Sometimes these rules and processes
reduce to paradigmatic examples of applications of E to D. Such procedure is
ordinarily employed in science and may be clearly seen in classical celestial me-
chanics.

Concretely, D is usually investigated by the construction of models which sat-
isfy the central principles of the theory. In general relativity, for example, we treat
the geometries of the universe via special solutions of Einstein field equations.
In this way one gets Friedmann-Robertson-Walter cosmology and Schwarzchild
unique spherically-symmetric solution to the vacuum field equations (outside any
source), which is static in its region (today employed in the description of geo-
metrical aspects of certain class of black holes).

Sentences which are true in the Tarskian sense in a modelM of the principles
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of a theory T, such that M reflects basic traits of D, are said to be quasi-true in D.
M has to save the appearances in D up to some discrepancies (that are known
and can, in principle, be controlled).

There may be distinct models M and M′ such that things occur in D as if
M and M′ are both true versions of reality in D, up to a certain restrictions and
approximations. So, there may exist sentences s and s′ of the language by means
of which we are talking about D, such that s and s′ are true in the usual sense in
M and M′, respectively, but s and s′ are logically incompatible (one may be even
the negation of the other). Since s and s′ are said to be quasi-true in D if and
only if they are true in the usual sense in M and M′, it follows that s and s′ are
quasi-true in D, even if each of them is equivalent to the negation of the other
(s and s′ compose a pair of incompatible propositions; in particular, they may be
contradictory).

Taking into account the discussion of this section, we arrive at an informal
definition and metalogical characterization of a physical theory in agreement
with the present-day state of physics. A physical theory T, metalogically speaking,
is a triple

T = 〈E,D,R〉,
where E is a mathematical species of structures (Bourbaki 1968), D is a domain
or a family of domains of physics (composed by a class of physical systems), and R
is a collection of rules that constitute the link between E, D, and our experience
(da Costa & Doria 2007). This link requires that some propositions (sentences)
of the language L subjacent to T are quasi-true, in particular true in the Tarskian
sense.

From the syntactical point of view, the relevant sentences of L are those which
are quasi-true inD. Semantically, the quasi-truth of propositions of L depends on
certain usual models (encoded in E) that describe relevant aspects of D, leading
to quasi-truths. R relates E and some of its models to empirical sentences, that
is, to experience.

The structures encompassed under E may be partial structures, what con-
tributes to give to T some power to accommodate or to overthrow most inconsis-
tencies. For example, Bohr atom, even being inconsistent, constitutes a theory
in the above sense. However, the natural tendency is to change or to eliminate
theories as soon as they present inconsistencies (contradictions).

In QFT, E stands for some mathematical tools such as Lagrangeans, differ-
ential equations of fiber bundles, D denotes a family of fixed classes of physical
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systems, and R includes the standard methods of measurement, procedures of the
theory of accidental errors, and technical devices of renormalization. (In fact, R
can be rather complex and involves numerous mathematical and empirical tech-
niques).

Implicit in the conception of quasi-truth is classical logic, above all in the
characterization of the models employed to introduce quasi-truth in terms of the
Tarskian truth. Nonetheless, classical logic can be replaced by other logics (for
instance by a paraconsistent logic). Moreover, it is not difficult to perceive that
the logic of quasi-truth is, strictly speaking, paraconsistent.

Bueno and the present author observed in da Costa & Bueno 1998 that (I
insist on a question already referred to above):

A remark on our terminology is important here. We call the kind
of truth defined in this paper pragmatic truth, owing to its connections
with the pragmatic conception of truth, as developed by philosophers
like James, Dewey and particularly Peirce. (. . .) However, our piece is
not exegetical. The sole point we wold like to emphasize is that our defi-
nition was heuristically inspired by some passages of pragmatics thinkers,
such as Peirce, when he wrote that, ’consider what effects, that might
conceivably have practical bearings, we conceive the object of our con-
ception to have. Then, our conception of these effects is the whole of
our conception of the object’ (. . .)

In our opinion, the definition of pragmatic truth studied in this pa-
per captures, at least in part, the common concept of a theory saving
the appearances, usually by means of partially fictitious constructions . . ..
May be it would be better to call our kind of truth quasi-truth instead of
pragmatic truth. (da Costa & Bueno 1998, p. 604)

4. Invariance and definability

The notion of invariance or symmetry belongs to the fundamental ideas of
physics. Cottingham and Greenwood assert in their introductory book that,

The construction of the Standard Model has been guided by principles
of symmetry. The mathematics of symmetry is provided by group the-
ory; groups of particular significance in the formulation of the Model are
described . . . The connection between symmetries and physics is deep.
Noether’s theorem states, essentially, that for every continuous symme-
try of Nature there is a corresponding conservation law. For example, it
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follows from the presumed homogeneity of space and time that the La-
grangian of a closed system is invariant under uniform translations of the
system in space and time. Such transformations are therefore symmetry
operations on the system. It may be shown that they lead, respectively, to
the laws of conservation of the momentum and conservation of energy.
Symmetries, and symmetry breaking, will play a large part in this book.
(Cottingham and Greenwood 2007, p. 3)

But the theory of invariance has a close relationship with the concept of de-
finability. The generalized Galois theory (GGT) shows how intimate is the link
between invariance and definability (see da Costa and Rodrigues 2007).

GGT constitutes an extension of common Galois theory and Klein’s famous
Erlangen Program. This program originally purported to systematize a good part
of geometry through the concept of group of transformations. But many areas of
mathematics may be conceived as the study of properties and relations invariant
under certain groups of transformations, that is, their groups of automorphisms.
Thus, topology deals with the group of homeomorphisms, projective geometry
with the group of collineations and linear algebra with the linear automorphisms
of a vector space.

An interesting point is that the mathematical structures considered in GGT
are not first-order structures or models as in usual (first-order) model theory. The
structures are higher-order constructs, like topological space, topological vector
space, and differentiable manifolds. The mathematical structures in physics are,
normally, higher-order arrangements of relations, including monadic relations.

We introduce the concept of definability by means of infinitary languages (the
finitary languages are often too limited), and it is proved that definability and
invariance are equivalent concepts, the two faces of the same coin. In reality,
GGT generalizes first-order model theory, and one of the aims of some of my
collaborators and of myself is to develop GGT to give rise to a convenient higher-
order model theory, so that it contains, for instance, Bourbaki’s theory of species
of structures in a new setting.

GGT has inter-relations with α-logic and many of its results can be seen as
belonging to this class of logics (on α-logic, see da Costa 1974, da Costa and
Pinter 1976).

Obviously, theories and laws of physics must be invariant under the replace-
ment of a structure by another isomorphic to it, since mathematical species of
structures satisfy this condition (their axioms are always transportable accord-
ing to Bourbaki). Moreover, there exists an interplay between Lagrangeans (or
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Hamiltonians) of physical theories and invariance or symmetry. We determine,
so to say, the great physical theories by the help of Lagrangeans (or of Hamil-
tonians). The most relevant symmetries are those of such mathematical struc-
tures. Here, Noether theorem and symmetry breaking are basic. The princi-
ples of covariance and the local gauge symmetries, involving Lie groups, can
be investigated in GGT and perhaps by this way one clarifies and systematizes
the invariance in physics. (In some cases we have to appeal to semi-groups, to
pseudo-groups and to local species of structures).

Anyhow, we are allowed to affirm that physics, as a theory of dynamical phys-
ical systems, reduces in part to the investigation of Lagrangians or Hamiltonians
and the corresponding differential equations, as well as their symmetries or in-
variances. (Thermodynamics is out of this characterization, since it does not get
involved with the dynamical evolution of physical systems.)

Two papers of mine are devoted to GGT (da Costa 2007 and da Costa &
Rodrigues 2007), where the interested reader will find numerous references, in
particular on the works of the Portuguese mathematician José Sebastião e Silva
and the Russian-French algebraist Mark Krasner, the creators of GGT.

5. Particles and fields

Some views of Schrödinger did impress me very much thirty years ago. He de-
fended the thesis that the notion of equality or of identity didn’t make sense in
connection with elementary particles of the same kind (electrons, protons, etc.)
(see Schrödinger 1952, pp.17–8). Then I tried to construct what I called non re-
flexive logic (specifically what I called Schrödinger logic), a logic in which the law
of identity is not valid, in particular because equality has no meaning for certain
objects (in consequence, these objects could not satisfy that law, also named prin-
ciple of reflexivity of equality). It was clear for me that to build such logic would
be a very difficult task: one would get into hard problems, including a profound
revision of classical logic and the impossibility of employing natural language in
the elaboration of an informal semantics for the new logical constants. (If objects
a and b are out of the range or equality, how is it possible to say that they are dis-
tinct, i.e., not equal? What would the statement “a and b have distinct positions
in space-time” mean? Is it meaningless to assert that two electrons, one in the
North Pole and other in the South Pole, at a given time, are distinct?) Due to
this fact, I suggested in da Costa 1980 (pp. 117ff) that a theory of quasi-sets should
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be constructed, encompassing the standard sets — of the usual theories of sets —
as particular sets and, in such a theory, to build a semantics for my Schrödinger
logic and, of course, for non-reflexive logics in general.

One of my former graduate students and today my colleague D. Krause begun
to work in this subject under my guidance for his PhD in the eighties of the last
century. He built a quasi-set theory, a theory which enables us to deal with collec-
tions of objects (quasi-sets) to which for some of its elements the standard notion
of identity (equality), à la Schrödinger, does not hold, but there is a weaker notion
of indiscernibility, or indistinguishability, instead (Krause 1992, French & Krause
2006). Krause has also extended Schödinger logic to a higher order system –
simple theory of types– and to an intensional higher-order Schrödinger logic, on
which a semantics founded in quasi-set theory was built and a weak completeness
theorem presented –for these and other developments, see da Costa and Krause
1994, 1997, French & Krause 2006.

We have today formalisms to cope with the question of non-individuals, i.e.,
objects that infringe the classical theory of identity, which governs the individu-
als. However, we have to work to give to the logic of non-individuals a conve-
nient physical semantic counterpart (a problema already discussed in French and
Krause 2006). Solutions redefining the notion of equality are also possible, and
have to be investigated in detail.

If one thinks of non-individuals (or quasi-individuals) as objects to which
equality cannot be applied, one has to exclude from consideration space-time
localization and properties depending essentially on space and time (in the case
of elementary particles, certain quantum numbers). We, thus, should distinguish
between properties intrinsic to a kind of particles (charge, rest mass, . . .) and
those that are extrinsic (space-time localization). If the principle of identity of
the indiscernibles is assumed and only intrinsic properties are taken into account,
then two electrons, for example, would be identical. However, identity could be
conceived independently of the mentioned principle; in effect, there are several
ways open to the elaboration of non reflexive logics, including stronger ones in
which even the law of the indiscernibility of identicals in not, in general, valid.

The question then is to verify if QM possesses a formulation without equality,
unless extrinsic properties get involved, when the evolution of quantum systems
is described. Within certain limits this can be done. In QM, no elementary par-
ticle is distinguished from another one of the same species: any “permutation” of
particles of the same species does not affect the validity of its laws and principles.

We normally introduce considerations related to space and time in QM.
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Schrödinger equation determines the dynamical behaviour of a physical system.
If extrinsic properties are introduced, as it really happens, then there is a weak
version of equality in QM, and classical logic reappears. This move justifies the
possibility of a logic of non-individuals (for technical details and philosophical
discussion, see French and Krause 2006). So, there exists a version of QM based
on a non-reflexive logic. But till now, it is fundamentally a philosophical proposal,
since such approach didn’t present an essential new empirical result.

However, in QFT there are various obstacles to the construction of a pure
theory of particles, be as individuals or as non-individuals. This is so because
QFT consists necessarily of a field theory, in which the proper concept of par-
ticle loses part of its relevance. Nonetheless, particles occur again in quantum
statistical mechanics. Therefore, the best solution seems to maintain that the
languages of fields and of particles are both fundamental, in a certain sense ex-
tending Bohr’s thesis of complementarity. Perhaps in the future we shall get a
particle version of QFT, including or not non-individuals.

There is another topic that will perhaps contribute new views on a set-theo-
retic approach to the foundations of quantum physics: quantum logics. If quan-
tum logic is really necessary to underlie quantum theories, then the standard
set-theoretic approach has to be revised (da Costa 1980).

All of us are at the beginning of our work. In this century we or other re-
searchers surely will find the way to arrive at the solution to these questions.

Appendix A: A metaphysics of structures

I shall treat in the appendix some topics of a metaphysics of structures. This
theme exemplifies very well what I asserted, in the Introduction, about the lan-
guage of set theory and its relevance.

Some philosophers, such as S. French and J. Ladyman (Ladyman 1998) are
trying to build a metaphysics of structures: the universe is composed by struc-
tures. I shall intend to show, in outline, that such conceptual construction is
logically and formally possible, presenting a formalization of a structural meta-
physics (and ontology)/ However, I don’t want to get into exegetical questions,
and don’t argue that my formalization reflects precisely the views of the men-
tioned philosophers.

To begin with, let us reason on the basis of informal set theory, including
relations and set theoretical structures (da Costa & Rodrigues 2007 and Bourbaki
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1968). A relation R may be unary (set), binary, . . ., n-ary (0 < n < ω). If R is
unary, then R is in fact a set; so, sets are relations. When R is n-ary, it consists of a
set of n-tuples. In particular, the unit set formed by only one n-tuple 〈a1, . . . , an〉
is a relation. The empty set is also a relation. All relations are sets, that is, unary
relations.

On the other hand, a mathematical structure S is an n-tuple of the form

S = 〈D, r1, . . . , rn〉
where D is a relation (set), called the domain of S, and r1, . . . , rn are first-order
relations defined on D (in particular, operations). I shall consider only first-order
relations to simplify the exposition; but structures with higher-order relations are
treated analogously.

Therefore, {S} is a unary relation (and also a unit set). We may then identify
the structure S to the unary relation {S}. In consequence, the construction of
a metaphysics of structures is equivalent to the construction of a metaphysics of
relations.

Any relation can be transformed into a structure. In effect, given the relation
R = R(r1, . . . , rn) connecting other relations r1, . . . , rn, it may be converted into a
structure R∗ as follows: we put

R∗ = {〈K, r1, . . . , rn〉},
where K =

⋃n
i=1 field(ri), and field(ri) is the union of the domain and the co-

domain of ri; we then identity R with R∗. Clearly, R∗ is a structure.
We postulate that any object is a structure. In addition, we suppose that any

structure (relation), if not empty, is composed by structures, and that some se-
quences of structures, s1, s2, . . . ,, each of which, starting with s2, is part of the
preceding, may proceed to the infinite (the notion of part is easily definable).
Then, a convenient formalization of the notion of structural metaphysics (or on-
tology) may be based on an appropriate system of set theory, without the axiom
of regularity. A good option would be to take Zermelo-Fraenkel system minus
regularity (see Fraenkel et al. 1973, Kuratowski & Mostowski 1968). Variables
are interpreted as ranging on (unary) relations and the other relations and struc-
tures are introduced by definition. In synthesis, ZF gives us an abstract theory of
structures according the above interpretation.

However, we need the structures that form the material universe and that, for
this fact, are involved with space and time. We then add to ZF a new primitive
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unary predicate R, such that R(x) means that x is a real or concrete structure (for
example, particles could be conceived as unary relations composed of relations
–unary, binary, etc.). The resulting system will be denoted by ZFR. Postulates
governing the structures that satisfy R can be adjoining to those of ZFR, in con-
formity with the view one has on the nature of the universe. Evidently, we may
strengthen ZFR in various distinct manners, for example to handle categories and
toposes.

We are allowed to found quantum physics on an ontology of structures. (Fields
and particles constitute, really, structures, etc.) It is not difficult to perceive
the philosophical simplicity that an ontology of structures would bring to the
philosophy of physics.

A subtle point is the following: although ZFR was motivated by set-theoretic
considerations, it has other interpretations, even essentially non set-theoretical;
for example, one purely structural, centered around the intuition of structuralist
philosophers.

Appendix B: Quasi-truth

I present here a sketch of the theory of quasi-truth (for details, consult da Costa
1989, da Costa & Bueno 1998, da Costa & French 2003). It was conceived
to formalize the informal and intuitive view according to which a good theory
T (proposition, sentence, or hypothesis) save the appearances in a domain of
knowledgeD. Or, in other words, when things occur inD as if T were strictly true
in D (in the Tarskian sense). Quasi-truth constitutes, in fact, a generalization of
Tarski’s conception of truth. In what follows, I reproduce an excerpt of da Costa
et al. 2007, pp. 851–3:

Let us suppose that we are interested in studying a certain domain
of knowledge Δ in the field of empirical sciences, for instance, particle
physics. We are, then, concerned with certain real objects (in particle
physics, with some configurations in a Wilson chamber, some spectral
lines, etc.). Let us denote the set of these objects by A1. Among the
objects ofA1, there are some relations that interest us, and that we model
as partial relations Ri, i ∈ I (every relation having a fixed arity). The
relations Ri are partial relations, that is, each Ri, supposed of arity ri, is
not necessarily defined for all ri-tuples of elements of A1. More formally,
an n-place partial relation R can be viewed as a triple 〈R1,R2,R3〉, where
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R1, R2, and R3 are mutually disjoint sets, with R1 ∪ R2 ∪ R3 = Dn, and
such that R1 is the set of n-tuples that (we know) belong to R; R2 the set
of n-tuples that (we know) do not belong to R; and finally R3 of those n-
tuples for which it is not defined whether they belong or not to R. (Note
that when R3 is empty, R is a usual n-place relation that can be identified
with R1.)

The reason for using partial relations is that they are supposed to
express what we do know, or what we accept as true, about the actual re-
lations among the elements of A1. Thus, the partial structure 〈A1,Ri〉i∈I
encompasses, so to say, what we know, or accept as true, about the ac-
tual structure of Δ. However, to systematize our knowledge of Δ, it is
convenient to introduce in our structure 〈A1,Ri〉i∈I some ideal objects.
(In particle physics, quarks would be an example.) The set of these new
objects will be denoted by A2. It is understood that A1 ∩ A2 = ∅, and
we stipulate that A = A1 ∪ A2. In this way, the modeling of Δ involves
new partial relations Rj, j ∈ J, some of which extend the relations Ri, i ∈ I.
Furthermore , there are some sentences (closed formulas) of the language
L, in which we talk about the structure 〈A,Rk〉k∈I∪J (I ∩ J = ∅) that we
accept as true, or that are true (in the sense of the correspondence the-
ory of truth). This occurs, for instance, with sentences expressing true
decidable propositions (a proposition whose truth or falsehood can be
decided), and with some general sentences that express laws or theories
already accepted as true. Let us denote the set of such sentences, dubbed
primary, by P (this set may be empty).

Given this informal discussion, we suggest that what we call a simple
pragmatic structure (sps) be regarded as a set-theoretic structure of the
form:

A = 〈A1,A2,Ri,Rj,P〉i∈I,j∈J,
“where the elements in question satisfy the conditions above. Alterna-
tively, we can simply write:

A = 〈A,Rk,P〉k∈K
“for a sps, where A = A1 ∪ A2 and the Rk are partial relations defined
on A, and P is a set of sentences of the language L of the same similarity
type as that of A, and which is interpreted in A. Note that for some k, Rk
may be empty.

Let L be a first-order language with identity, but without function
symbols. The symbols of L are logical symbols (connectives, individual
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variables, quantifiers, and the identity symbol), auxiliary symbols (paren-
theses), a collection of individual constants, and a collection of predicate
symbols. To interpret L in a sps A is to associate to each individual con-
stant of L an element of A (the universe of A), and to each n-ary pred-
icate symbol of L a relation Rk, k ∈ K, of the same arity. It is supposed
that every predicate of the family Rk, k ∈ K, is associated with a predicate
symbol.

Definition 5.1. Let L and A = 〈A,Rk,P〉k∈K be, respectively, a language
and a sps in which L is interpreted. Let B be a total structure, that is, a usual
structure whose n-ary relations are defined for all n-tuples of elements of its
universe. And suppose that L is also interpreted in B. Then, B is said to be
A-normal if the following conditions are met:

1. (1) The universe of B is A.

2. (2) The (total) relations of B extend the corresponding partial relations
of A.

3. (3) If c is an individual constant of L, then in both A and B, c is inter-
preted by the same element.

4. (4) If α ∈ P, then B |= α.

Given a pragmatic structure A, it may happen that there are no A-
normal structures. It is possible, however, to provide a system of nec-
essary and sufficient conditions for the existence of such structures (see
Mikenberg et al. 1986). One condition of this system is the following: For
each partial relation Rk in A, we construct a set Mk of atomic sentences
and negations of atomic sentences such that the former correspond to
n-tuples that satisfy Rk, and the latter to n-tuples that do not satisfy Rk
(such sentences correspond to n-tuples in the ‘anti-extension’ of Rk). Let
M be the set

⋃
k∈K Mk. Therefore, a sps A admits an A-normal structure

only if the set M ∪ P is consistent.
In what follows, we will always suppose that our sps satisfies the rel-

evant conditions; in other words, given any sps A, the set of A-normal
structures is not empty.

Definition 5.2. Let L and A be, respectively, a language and a sps in which L
is interpreted. We say that a sentence α of L is pragmatically true, or partially
true in the sps A, according to B, if

1. (1) B is an A-normal structure, and
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2. (2) B |= α, that is, α is true in B in accordance with the Tarskian
definition of truth.

In other words, we say that α is pragmatically (or partially) true in the
sps A if there exists an A-normal structure B in which α is true in the
standard Tarskian sense. If α is not pragmatically (partially) true in the
sps A according toB (α is not pragmatically (partially) true in the sps A),
we say that α is pragmatically (partially) false in the sps A according to B
(α is pragmatically (partially) false in the sps A).

Combining the definitions of quasi-truth and of physical theory (delineated in
the body of the paper), one completes the precise definition of the latter concept.
Moreover, there exists a logic of quasi-truth, logic that is paraconsistent, since
that in the same domain D inconsistent theories (sentences) may be quasi-truth
(da Costa et al. 2007, pp. 853ff).

Classical logic was employed, as a base, in the definition of quasi-truth, but
other logics could be employed instead; in effect, quasi-truth is defined up to a
logic.

A general exposition of the concept of species of structures (Suppes’ predi-
cates) and structures in physics is found in da Costa & Doria 1991, and da Costa
and Rodrigues 2007.
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Resumo

Discuto algumas questões da física quântica, por exemplo a validade e limi-
tações da linguagem básica da teoria de conjuntos para tratar de problemas
relacionados às partículas elementares. Também apresento um esboço de certa
formalização de uma espécie de “metafísica de estruturas” que pode ser útil
para prover uma fundamentação matemática para determinado tipo de “rea-
lismo estrutural ôntico”, e brevemente delineio minha maneira de compreender
as teorias científicas e a atividade científica.
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