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Abstract. The Logics of Deontic (In)Consistency (LDI’s) can be considered as the deontic
counterpart of the paraconsistent logics known as Logics of Formal (In)Consistency. This
paper introduces and studies new LDI’s and other paraconsistent deontic logics with different
properties: systems tolerant to contradictory obligations; systems in which contradictory
obligations trivialize; and a bimodal paraconsistent deontic logic combining the features of
previous systems. These logics are used to analyze the well-known Chisholm’s paradox,
taking profit of the fact that, besides contradictory obligations do not trivialize in LDI’s,
several logical dependencies of classical logic are blocked in the context of LDI’s, allowing to
dissolve the paradox.
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Introduction

The phenomenon of inconsistency has catastrophic consequences in theories based
on classical logic. There is a simple reason to this: in the context of classical logic, a
contradiction like α and ¬α trivializes the whole theory, sinc everything is logically
derived from a contradiction. Paraconsistent logics, developed independently by da
Costa 1963 and Jaśkowski 1948, are logics tolerant to contradictions, and so they
admit non-trivial inconsistent (closed) theories.

The Logics of Formal (In)Consistency (LFI’s), introduced in Carnielli & Marcos
2002 and also studied in Carnielli, Coniglio & Marcos 2007, are a special class of
paraconsistent logics in which there is a formal distinction between notions such as
contradiction, inconsistency and triviality. This is attained by the use in the formal
language of connectives for consistency and inconsistency.

A phenomenon analogous to inconsistency takes place with deontic logics, in the
context of moral dilemmas (see, for instance, McConnell 2006). If O denotes the
deontic “obligation” operator, a moral dilemma is a situation of conflicting or con-
tradictory obligations of the form Oα and O¬α. Note that this is not a particular
case of contradictoriness like Oα and ¬Oα, but a different (however related) situ-
ation. In the presence of conflicting obligations, classical deontic logics trivialize,
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in the same manner as classical logic trivializes when a contradiction occurs. This
similarity justify a paraconsistentist approach to deontic paradoxes.

The first paraconsistent deontic system, called C D
1 , was introduced in da Costa &

Carnielli 1986 with the aim of analyzing moral dilemmas. It is a deontic extension of
da Costa’s logic C1, being also suitable to the study of deontic paradoxes in general.

The Logics of Deontic (In)Consistency (LDI’s) were firstly introduced in Coniglio
2007, by considering two deontic systems, DmbC and DLFI1, based on two different
LFI’s. It was shown that these systems are appropriate to analyze the well-known
deontic paradox of Chisholm introduced in Chisholm 1963.

In Peron & Coniglio 2008 two new LDI’s were introduced, SDmbC and BDmbC,
enlarging the possibilities of analysis of Chisholm’s paradox, and in Peron 2009 it
was presented the distinction between LDI’s and deontic LFI’s, among other results.

The present paper extends our previous discussions on the subject, in particular
the analysis of Chisholm’s paradox in this context. Moreover, two new paraconsis-
tent deontic systems are introduced, which can be considered, in some sense, as
minimal: DPI, a LDI which is not a LFI, and SDPI, both a LDI and a LFI such that
conflicting obligations trivialize, provided that the involved sentence is deontically
consistent. Concerning Chisholm’s paradox, it is concluded here that the violation of
the Principle of Deontic Consistency is not the unique source of problems in deon-
tic paradoxes based on contrary-to-duty obligations. Indeed, the rigidity of classical
logic, in which too much sentences are logically identified, originates unnecessary
logical dependencies among the premises of a given information set, and then sev-
eral plausible formalizations of the given premises must be discarded. The use of
a richer language based on a more flexible logic allows more translations from the
natural language to the formal one, and so the paradox can vanish. If, in addition,
the Principle of Deontic Consistency is weakened, there are still more possibilities to
avoid the paradox.

The organization of the paper is as follows: in Section 1 the basic notions con-
cerning paraconsistency in general and LFI’s in particular are briefly recalled. In
Section 2 it is firstly analyzed the Standard Deontic Logic SDL and then the LDI’s
are introduced, describing succinctly the main systems to be studied in the paper.
Section 3 is devoted to the analysis of Chisholm’s paradox under the perspective of
some systems, namely SDL, DmbC, SDmbC, DPI, SDPI and BDmbC. Finally, Sec-
tion 4 concludes with a brief evaluation of what was done in this paper.

1. Paraconsistency and Formal (In)Consistency

Da Costa’s approach to paraconsistency is based on the idea that certain sentences
of the object language can be marked as being “classical” or “well-behaved” (cf. da
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Costa 1963). More precisely, in a logical context in which contradictions are possible,
in the sense that a contradiction does not necessarily trivialize, it is possible to define
or to assume as hypothesis inside a formal deduction that an specific sentence, say
α, has classical properties. The classical (or well) behavior of α is another sentence,
¬(α ∧ ¬α), usually denoted by α◦. In order to simplify the exposition we limit
ourselves to the logic C1, the first logic in the decreasing hierarchy of paraconsistent
logics (Cn)n≥1. Being so, in general

α,¬α 6` β

for some β , but always
α◦,α,¬α ` β

for every β (here, ‘`’ is the symbol for the consequence relation, and so ‘ 6`’ means
“does not follow”). That is, contradictions do not necessarily trivialize, but contra-
dictions of classically (or well) behaved sentences always trivialize (or “explode”).

There is another way of interpreting da Costa’s approach to paraconsistency:
a contradiction is not enough to trivialize, but a contradiction of a contradiction
trivializes:

α,¬α 6` β

for some β , but always
(α∧¬α),¬(α∧¬α) ` β

for every β . In other words, contradictions are not logically trivial, but a contradic-
tion involving a contradiction is!

It can be observed that the statement that α is well-behaved, namely α◦, is ex-
pressed in terms of the other connectives of the object language. Thus, if (α ∧ ¬α)
can be read as “α is contradictory” then α◦ says that “α is not contradictory”. Being
so, non-contradictoriness is equivalent to well-behaviorness, or classicality, or con-
sistency. But, are the notions of non-contradiction and consistency (or, dually, the
notions of contradiction and inconsistency) necessarily the same?

This is the standpoint of Logics of Formal (In)Consistency (in short, LFI’s), intro-
duced in Carnielli & Marcos 2002 with the aim of generalizing da Costa’s C-systems.
In this approach the notion of well-behavior or consistency of a sentence α is repre-
sented by the sentence ◦α, where ◦ is a primitive connective of the object language
(and, different to the logics Cn, in general this connective cannot be expressed in
terms of the others). Dually, it is possible to consider a inconsistency connective •
as a primitive, such that the interdefinability laws ◦α ≡ ¬•α and •α ≡ ¬◦α hold in
general.

In term of consistency, LFI’s has the following property (compare with C1 above):

α,¬α 6` β
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for some β , but always
◦α,α,¬α ` β

for every β . But, different to da Costa’s systems, the consistency operator ◦ is primi-
tive and is not necessarily identical to non-contradiction: in the weaker LFI’s, ◦α and
¬(α∧¬α) are not equivalent. Moreover, in general

◦α ` ¬(α∧¬α) but ¬(α∧¬α) 6` ◦α;

¬◦α ` (α∧¬α) but (α∧¬α) 6` ¬◦α.

Thus, in the context of LFI’s the notions of consistency and non-contradiction, as
well as the notions of inconsistency and contradiction, can be separated. The steps
through the definition of LFI’s are briefly outlined below (the interested reader can
consult Carnielli & Marcos 2002 and Carnielli, Coniglio & Marcos 2007).

Let L be a (propositional) logic having a negation connective ¬. A theory Γ of
L (that is, a set Γ of sentences of L) is contradictory if Γ ` α and Γ ` ¬α for some
sentence α. Obviously, Γ is not contradictory if and only if, for every α, either Γ 6` α
or Γ 6` ¬α. A theory Γ is trivial if Γ ` α for every α, and is non-trivial otherwise.
If Γ,α,¬α ` β for every α and β the theory Γ is said to be explosive. A logic L is
non-trivial if it has a non-trivial theory, and it is explosive if every theory is explosive
(equivalently, if α,¬α ` β for every α and β). A logic L is paraconsistent if it is
non-trivial and non-explosive.

Let ©(p) be a set of sentences depending exactly on the propositional letter p
such that

(a) ©(α),α 0 β

(b) ©(α′),¬α′ 0 β ′

for some α, α′, β and β ′. A logic L is gently explosive (w.r.t. ©(p)) if

(c) ©(α),α,¬α ` β

for every α and β . Given a sentence α, the set ©(α) expresses the consistence of

α relative to logic L (and negation ¬). Whenever the set ©(p) is a singleton, the
unique element of it will be denoted by ◦p and then the sentence ◦α denotes the
consistency of α, where ◦ is called a consistency operator. By the very definition of
consistency operator, ◦α,α,¬α ` β for every α and β .

Definition 1.1. A Logic of Formal Inconsistency (LFI) is a paraconsistent logic having

a set©(p) satisfying properties (a), (b) and (c) as above. �
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It is immediate to see that logic C1 is a LFI with ◦α= α◦ = ¬(α∧¬α). Moreover,
every logic Cn (for n ≥ 1) is a LFI with an appropriate definition of the consistency
operator ◦n. In fact, consider the following recursive definition: α1 = α◦, and αn+1 =
(αn)◦ (for n ≥ 1). Finally, let α(1) = α◦ and α(n+1) = α(n) ∧ αn+1 (for n ≥ 1). Then,
consistency in logic Cn is given by the operator ◦np = p(n) or, equivalently, by the set

©n(p) = {p
1, p2, . . . , pn} (for n ≥ 1). It is interesting to observe that the logic CLim

(cf. Carnielli & Marcos 1999), the deductive limit of the hierarchy (Cn)n≥1, is a LFI

in which consistency is expressed by the infinite set ©(p) = {p1, p2, p3, . . .}. That
is, there are LFI’s in which consistency is expressed by an infinite set of sentences
instead of a single consistency operator.

The simplest LFI introduced in Carnielli & Marcos 2002 is called mbC, defined
as follows:

Definition 1.2. The logic mbC is defined over the language ◦,¬,∧,∨,→ by means
of the following:

Axiom schemas:

(Ax1) α→ (β → α)

(Ax2) (α→ β)→ (α→ (β → γ))→ (α→ γ))

(Ax3) α→ (β → (α∧ β))

(Ax4) (α∧ β)→ α

(Ax5) (α∧ β)→ β

(Ax6) α→ (α ∨ β)

(Ax7) β → (α∨ β)

(Ax8) (α→ γ)→ ((β → γ)→ ((α∨ β)→ γ))

(Ax9) α∨ (α→ β)

(Ax10) α∨¬α

(bc1) ◦α→ (α→ (¬α→ β))

Inference rule:

(MP)
α α→ β

β �
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From now on, the set of sentences defined over the basic language ¬,∧,∨,→ will
be denoted by For, and the set of sentences of mbC (which is obtained by adding
the unary connective ◦) will be denoted by For◦.

It is worth noting that the system defined over For by means of (Ax1)–(Ax9)
and (MP) is the so-called Positive Classical Logic, denoted by PCL. Classical Logic
CL defined over For is obtained from PCL by adding (Ax10) and the “explosion law”

(exp) α→ (¬α→ β)

Of course a version of CL over For◦, called eCL, can be obtained from mbC by
adding the axiom schema ◦α; in this sense CL is a deductive extension of mbC in
which every sentence is consistent (and so (bc1) collapses to (exp)). On the other
hand, ⊥=de f ◦α∧(α∧¬α) is a bottom sentence in mbC, that is, ⊥ `mbC β for every
β and so ∼α =de f (α→ ⊥) is a classical negation in mbC. Therefore mbC defined
over the set of sentences For◦∼ generated by ∼,◦,¬,∧,∨,→ (that is, with classical
negation ∼ as a primitive) can be seen as the conservative extension of CL (now
defined over the language ∼,∧,∨,→) obtained by adding axiom schemas (Ax10),
(bc1) and ∼α↔ (α→⊥) where, as usual, (α↔ β) stands for (α→ β)∧ (β → α).

The logic mbC (as most of the LFI’s presented in Carnielli & Marcos 2002 and
Carnielli, Coniglio & Marcos 2007) does not satisfy the replacement property, namely:

if α a` β then ϕ(α) a` ϕ(β)

for every α, β , ϕ (here, α a` β means that α and β are interderivable, that is,
α ` β and β ` α). For instance, (p ∧ q) is interderivable with (q ∧ p), but ¬(p ∧
q) is not interderivable with ¬(q ∧ p); analogously, ◦(p ∧ q) is not interderivable
with ◦(q ∧ p). This means that ¬ and ◦ are non-truth-functional connectives and
so semantics is not a trivial issue for mbC (nor for the other LFI’s with non-truth-
functional connectives). In Carnielli, Coniglio & Marcos 2007 the following two-
valued semantics was proposed for mbC:

Definition 1.3. Let 2= {0, 1} be a set of truth-values, where 1 denotes “true” and 0
denotes “false”. A mbC-valuation is a mapping v : For◦ −→ 2 satisfying the following
clauses:

(v1) v(α∧ β) = 1 iff v(α) = v(β) = 1,

(v2) v(α∨ β) = 0 iff v(α) = v(β) = 0,

(v3) v(α→ β) = 0 iff v(α) = 1 and v(β) = 0,

(v4) v(¬α) = 1 implies v(α) = 0,

(v5) v(◦α) = 1 implies v(α) = 0 or v(¬α) = 0. �

Principia 13(3): 299–326 (2009).



A Paraconsistentist Approach to Chisholm’s Paradox 305

As usual, we define Γ �mbC α iff v(α) = 1 for every mbC-valuation v such that
v(Γ) ⊆ {1}. Thus, the logic mbC is sound and complete for its valuation semantics,
cf. Carnielli, Coniglio & Marcos 2007:

Theorem 1.4. Let Γ ∪ {α} be a set of sentences in For◦. Then, Γ `mbC α if and
only if Γ �mbC α.

2. Logics of Deontic (In)Consistency

2.1. Standard Deontic Logic and Paraconsistency

Deontic logics study notions such as “obligation”, “permission”, “prohibition” and
similar concepts. Deontic logics were strongly influenced by notions from modal
logic. Despite the analogy between modal and deontic concepts can be traced to the
XIV century (cf. McNamara 2006), it can be argued that the symbolic and mathemat-
ical approach to deontic logics was inaugurated in the celebrated paper (von Wright
1951). In that article, von Wright distinguishes three kinds of modalities: alethic,
epistemic and deontic. The first ones deal with concepts such as “necessary” and
“possible”; the second ones concern notions as “verifiable” and “falsifiable”, whereas
the latter are related to notions such as “obligatory” and “permitted”.

There exist several systems formalizing deontic logic (see for instance Prakken
& Sergot 1994). The basic system is called SDL – Standard Deontic Logic. The idea
behind this logic is to extend the basic modal system, in which the usual box operator
� for necessitation is substituted by O (meaning “it is obligatory that”) by adding the
restriction that conflicting obligations are not allowed. This restriction is formulated
by means of axiom (O-E) below. The following axiomatization of SDL presented in
Coniglio 2007 is appropriate to our purposes.

Definition 2.1. The logic SDL is defined over the language O,¬,∧,∨,→ by means
of the following:

Axiom schemas:

(Ax1)–(Ax10) from mbC (recall Definition 1.2) plus

(exp) (α→ (¬α→ β))

(O-K) O(α→ β)→ (Oα→Oβ)

(O-E) Ofα→ fα where fα =de f (α∧¬α)

Inference rules:
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(MP)
α α→ β

β

(O-Nec)
` α
`Oα �

From now on, the set of sentences generated by the language O,¬,∧,∨,→ will
be denoted by ForO.

The usual axiomatizations of SDL depart from the set of axioms formed by the
instances in the deontic language of the classical tautologies (arguably, this is a lazy
and inelegant way to present an axiomatic extension of classical logic) and then
consider, instead of (O-E), the axiom schema

(D) Oα→¬O¬α

(usually called the Principle of Deontic Consistency) and the inference rules (MP)
and (O-Nec). It is useful and convenient to consider the derived deontic operator
Pα =de f ¬O¬α (meaning “α is permitted” or “α is permissible”). Thus, (D) can be
interpreted as follows: whatever is obligatory is permitted. Since classically ¬β is
equivalent to β → fα (for any α and β) then (D) can be reformulated as:

(D*) ¬(Oα∧O¬α)

stating that conflicting obligations are always false. Moreover, it can be proved that
(O-E), (D) and (D*) are equivalent in the presence of classical logic plus (O-K),
(O-Nec) and (MP).

An interesting alternative axiomatization of SDL is proposed in Chellas 1980 by
substituting (O-K) and (O-Nec) by the following:

(ROM)
α→ β

Oα→Oβ

(OC) (Oα∧Oβ)→O(α∧ β)

(ON) O>

(OD) ¬O⊥

where > can be taken as a classical tautology, for instance α∨¬α. Indeed, (OD) is
an alternative formulation of (D*), while (ON) and (O-Nec) are closely related. By
its turn, (O-K) can be derived from (ROM) and (OC).

Concerning semantics, and being deontic logics particular cases of modal logics,
the well-known Kripke semantics of possible-worlds offer an appropriate framework.
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Definition 2.2. A (generalized) Kripke struture is a triple 〈W, R, {vw}w∈W 〉 where:

1. W is a non-empty set (of possible-worlds);

2. R⊆W ×W is a relation (of accessibility) between worlds;

3. {vw}w∈W is a family of mappings vw : ForO→ 2 such that:

(k1) vw(α∧ β) = 1 iff vw(α) = vw(β) = 1,

(k2) vw(α∨ β) = 0 iff vw(α) = vw(β) = 0,

(k3) vw(α→ β) = 0 iff vw(α) = 1 and vw(β) = 0,

(k4) vw(¬α) = 1 iff vw(α) = 0,

(k5) vw(Oα) = 1 iff vw′(α) = 1 for every w′ in W such that wRw′. �

Let M = 〈W, R, {vw}w∈W 〉 be a a Kripke structure, w ∈ W and α a sentence. We
say that α is satisfied by M in w, denoted by M , w � α, if vw(α) = 1; α is satisfiable
in M if M , w � α for some w ∈W , and α is true in M , denoted by M � α, if M , w � α
for every w ∈ W . Given a class K of Kripke structures, a sentence α is valid (w.r.t.
K ) if, for every M ∈ K , M � α; and α is satisfiable (w.r.t. K ) if it is satisfiable for
some M ∈K . Finally, the consequence relation �K is defined as follows: Γ �K α iff
there exists a finite set {α1, . . . ,αn} ⊆ Γ such that (α1 ∧ . . .∧αn)→ α is valid (w.r.t.
K ).

Theorem 2.3. Let KSDL be the class of Kripke strutures such that the accessibility
relation R is serial, that is: for every w ∈ W there exists w′ ∈ W such that wRw′.
Then SDL is sound and complete for KSDL, that is: Γ `SDL α iff Γ �KSDL

α.

Now it is convenient to establish a parallel between some metalogical notions
from classical and deontic logics. Recall that in classical logic a contradictory theory
is trivial, and vice-versa. On the other hand, as observed in da Costa & Carnielli
1986, if a theory Γ derives conflicting obligations Oα and O¬α in SDL then Γ is
deontically trivial, that is, Γ ` Oβ for every β (and, a posteriori, it is trivial: Γ ` β
for every β). The converse also holds, and so deontic contradictoriness is equivalent
to deontic triviality, transposing to the deontic context a situation from classical logic.

In the previous section it was shown that LFI’s incorporate metalogical notions
such as consistency into the object language. This suggest us that some axioms as
(ON) and (OD) can be treated as metalogical notions which can be internalized
in the object language. Adapting to the modal context the definitions presented in
Section 1, the following definitions are proposed:
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Definition 2.4. Let L be a logic defined over the set ForO, and let Γ be a theory of
L. Then, Γ is said to be deontically contradictory or deontically conflicting (w.r.t. O) if
Γ ` Oα and Γ ` O¬α for some sentence α. The theory Γ is deontically trivial if Γ `
Oα for every α. If Γ,Oα,O¬α `Oβ for every α and β then Γ is said to be deontically
explosive. The logic L is deontically non-trivial if it has a deontically non-trivial theory,
and it is deontically explosive if every theory is deontically explosive (equivalently, if
Oα,O¬α ` Oβ for every α and β). The logic L is deontically paraconsistent if it is
deontically non-trivial and deontically non-explosive. �

It is worth noting that a deontic contradiction is of the form Oα ∧O¬α instead
of Oα∧¬Oα. Continuing with the analogy with LFI’s, let �(p) be a set of sentences
in ForO depending exclusively on the propositional letter p such that, for some
sentences α, α′, β and β ′,

(Da) �(α),Oα 1Oβ
(Db) �(α′),O¬α′ 1Oβ ′

A logic L is deontically gently explosive (w.r.t. �(α)) if

(Dc) �(α),Oα,O¬α `Oβ)

for every α and β . Given a sentence α, the set �(α) expresses the deontic consistence
of α relative to logic L (and negation ¬ and obligation O). Whenever the set �(p) is
a singleton, their unique element will be denoted by �p and then the sentence �α
denotes the deontic consistency of α, where� is called a deontic consistency operator.
The following definition is the deontic version of Definition 1.1

Definition 2.5. A Logic of Deontic Inconsistency (LDI) w.r.t. O and ¬ is a deontically
paraconsistent logic (w.r.t. O and ¬) having a set �(p) satisfying properties (Da),
(Db) and (Dc) as above. �

It should be noticed that a deontically paraconsistent logic (w.r.t. a negation ¬)
is necessarily paraconsistent (w.r.t. the same negation ¬). Indeed, by (exp), (O-
Nec) and (O-K), an explosive deontic logic is, a posteriori, deontically explosive.
Therefore, a deontically paraconsistent logic is, by force, a paraconsistent deontic
logic.

On the other hand, it is possible to define paraconsistent deontic logics, that is,
to enrich a given paraconsistent logic with a deontic operator, while preserving the
property that conflicting obligations trivialize. Thus, a paraconsistent deontic logic
is not necessarily a deontically paraconsistent logic. The analysis of systems of both
types is the topic of the next section.
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2.2. Paraconsistent Deontic Logics and Deontically Paraconsistent
Logics

The first paraconsistent deontic system proposed in the literature, called C D
1 , was

introduced in da Costa & Carnielli 1986 and it was also studied in Puga, da Costa &
Carnielli 1988. As suggested by its name, it is a deontic extension of C1, in which
some interesting relations between the consistency operator ·◦ and the deontic oper-
ator O arise, as we shall see below.

Related to the approach mentioned above, in Cruz 2005 it was studied a deon-
tic extension of C1 but, instead of taking (O-E), a stronger version was considered:
Oα→ α (observe that (O-E) is a particular case, with α substituted by fα). Another
difference with the previous works is that the deontic operator O cannot be iterated,
and so sentences such as OOα and O(α → Oβ) are not allowed. A paraconsistent
dyadic modal logic was also considered, extending C1 with a dyadic deontic oper-
ator Oβα meaning “α is obligatory in context (or under condition) β”. But, again,
an excessively strong axiom was considered: Oβα→ (α∧ β). Being so, some deon-
tic paradoxes as Chisholm’s paradox (see Section 3 below) cannot be satisfactorily
treated in this framework.

In the rest of this section some paraconsistent deontic system will be analyzed.

2.2.1. The logic DmbC

In Coniglio 2007 a deontic dimension was added to mbC, a minimal LFI (recall
Definition 1.2), by appropriately adapting the axiomatization of SDL presented in
Definition 2.1. The resulting system, called DmbC, has the consistency operator ◦ as
primitive (since it is based on mbC) but no interaction between ◦ and O is required.

Definition 2.6. The logic DmbC is defined over the language O,◦,¬,∧,∨,→ by add-
ing to mbC (recall Definition 1.2) the following:

Axiom schemas:

(O-K) O(α→ β)→ (Oα→Oβ)

(O-E)◦ O⊥α→⊥α where ⊥α =de f (α∧¬α)∧ ◦α

Inference rule:

(O-Nec)
` α
`Oα �

Alternatively, DmbC can be defined from the rules and axioms of SDL over For◦O

(the set of sentences generated by the language O,◦,¬,∧,∨,→) by replacing (exp)
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by (bc1) and (O-E) by (O-E)◦, respectively. It can be proved that DmbC is both
a LFI and a LDI. Thus, it has explicit operators for both consistency and deontic
consistency. This fact will be proved in Theorem 2.8 below. The first step is to
define a Kripke semantics for DmbC. This is obtained by modifying appropriately
Definition 2.2 as follows:

Definition 2.7. A Kripke struture for DmbC is a triple 〈W, R, {vw}w∈W 〉 where:

1. W is a non-empty set (of possible-worlds);

2. R⊆W ×W is a relation (of accessibility) between worlds;

3. {vw}w∈W is a family of mappings vw : For◦O→ 2 such that:

(kc1) vw(α∧ β) = 1 iff vw(α) = vw(β) = 1,

(kc2) vw(α∨ β) = 0 iff vw(α) = vw(β) = 0,

(kc3) vw(α→ β) = 0 iff vw(α) = 1 and vw(β) = 0,

(kc4) vw(¬α) = 0 implies vw(α) = 1,

(kc5) vw(α) = vw(¬α) = 1 implies vw(◦α) = 0,

(kc6) vw(Oα) = 1 iff vw′(α) = 1 for every w′ in W such that wRw′. �

Soundness and completeness of DmbC w.r.t. the semantics above was proved in
Coniglio 2007. As a matter of fact, this result, as well as a similar result for system
SDmbC to be defined below, are particular cases of a general completeness theorem
stated in Bueno-Soler 2008 for logics based on LFI’s enjoying the so-called Gk,l,m,n

axiom (cf. Carnielli & Pizzi 2008).

Theorem 2.8. DmbC is both a LFI and a LDI.

Proof. Consider a Kripke model with W = {w}, wRw and vw such that vw(p) =
vw(¬p) = 1 and vw(q) = 0 for propositional letters p 6= q. Then it is easy to see that
p,¬p 1DmbC q and Op,O¬p 1DmbC Oq, and so DmbC is neither explosive nor
deontically explosive. In particular, DmbC is neither trivial nor deontically trivial.
Using axiom (bc1) it follows that DmbC is a LFI in which the consistency of α is
expressed by ◦α. Finally, let �α =de f O◦α. By (O-Nec) applied to (bc1), followed
by (O-K) and (MP) it follows that DmbC is a LDI in which the deontic consistency
of α is expressed by �α. �

It is easy to see that by adding to DmbC the axiom schema ◦α it is obtained
a version of SDL over For◦O, denoted by eSDL. In fact, as proved above for mbC,
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axiom (exp) follows in that axiomatic extension of DmbC. On the other hand, by
(O-Nec), O◦α is a theorem for every α and so (O-E) follows.

As observed in Carnielli, Coniglio & Marcos 2007, the inconsistency operator •
can be defined in mbC as •α =de f ∼◦α in terms of the classical negation ∼, where
∼α =de f (α → ⊥) (the expected definition •α =de f ¬◦α in terms of the paracon-
sistent negation ¬ just works in stronger systems). Inspired by this, it is possible to
define in DmbC an operator for deontic inconsistency as follows:

�α=de f O∼◦α.

Since ◦α,∼◦α ` ⊥ then O◦α,O∼◦α ` O⊥ and so �α,�α ` ⊥, by (O-E)◦. This
means that �α ` ∼�α and �α ` ∼�α, but the converses are not true (as it can be
easily proved by using Kripke structures). Thus, the analogy between • and � is not
complete: •α≡∼◦α and ◦α≡∼•α, but neither �α≡∼�α nor �α≡∼�α.

2.2.2. The logic DPI

Observe that deontic consistency is a derived connective in DmbC (as in some other
systems to be defined below). A natural question is: it would be possible to define the
deontic counterpart of mbC, in the sense of being a LDI such that deontic paracon-
sistency is expressed by a primitive connective? This logic would be non-explosive
but without having a consistency connective. In other words, we are looking for a
minimal LDI which is not a LFI.

At this point, we must recall that mbC, the minimal LFI, has just one axiom
for the consistency operator ◦, namely (bc1). By removing that axiom (and by
removing ◦ from the language) it is recovered the interesting paraconsistent logic PI
introduced in Batens 1980.

Definition 2.9. The logic PI is defined over the basic language ¬,∧,∨,→ as follows:

Axiom schemas: Axioms (Ax1)-(Ax10) (recall Definition 1.2)

Inference rule: (MP) (recall Definition 1.2) �

The logic PI can be transformed in a LDI by adding the modality O, a connective
for deontic consistency and appropriate rules and axioms, as follows.

Definition 2.10. The logic DPI is defined over the language O,�,¬,∧,∨,→ by add-
ing to PI the following:

Axiom schemas:

(O-K) O(α→ β)→ (Oα→Oβ)

Principia 13(3): 299–326 (2009).



312 Marcelo Esteban Coniglio & Newton Marques Peron

(Dbc1) �α→ (Oα→ (O¬α→Oβ))

Inference rules:

(MP)
α α→ β

β

(O-Nec)
` α
`Oα �

Concerning semantics, DPI can be characterized by Kripke structures as those of
DmbC, but now R is not necessarily serial, and the valuations must satisfy clauses
(kc1)-(kc4) and (kc6) of Definition 2.7, plus the following:

(kc5.1) vw(�α) = vw(Oα) = vw(O¬α) = 1 implies vw(Oβ) = 1 for every β .

Using the usual techniques, it can be proved that DPI is sound and complete
w.r.t. its Kripke semantics.

As observed in Carnielli & Marcos 2002, the logic PI is not a LFI and the same
applies to DPI. On the other hand, by using Kripke structures it is easy to see that DPI
is deontically paraconsistent, being obviously a LDI. So, the following result follows:

Theorem 2.11. DPI is a LDI but it is not a LFI.

The semantics for DPI deserves some comments. Firstly, it should be observed
that it is possible to have a trivial valuation vt rue for PI such that vt rue(α) = 1 for
every α ∈ For. This is the semantical counterpart of the fact that PI is not finitely
trivializable, and so there is no bottom formula, that is, a sentence ⊥ such that
⊥ `PI α for every α. Being so, it would be expected that its deontic extension DPI
should maintain this feature and so it would be possible to satisfy Oα for every α.
This is why the accessibility relation of its Kripke frames is not necessarily serial:
it is possible to have an isolated world w in which vw(α) = 1 (and, in particular,
vw(Oα) = 1) for every α ∈ ForO.

The lack of a bottom formula (and so the absence of a consistency operator)
prevents the definition of a strong (that is, a explosive) negation ∼ in both PI and
DPI. Thus, the logic DPI is a relatively weak logic system.

2.2.3. The logic SDPI

From the last analysis, it seems that the logic DPI could be strengthened. A stronger
deontic extension of PI is possible, closer to SDL, by allowing logical explosion from
conflicting, deontically consistent obligations; in particular, this would allow the
definition of a bottom formula ⊥. It is enough to slightly modify DPI as follows:
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Definition 2.12. The logic SDPI is defined over the language O,�,¬,∧,∨,→ by
substituting in DPI axiom (Dbc1) by the following:

(SDbc1) �α→ (Oα→ (O¬α→ β)) �

The Kripke semantics for SDPI consists of the Kripke structures of DPI satisfying
the following clause:

(kc5.2) vw(Oα) = vw(O¬α) = 1 implies vw(�α) = 0.

Note that (kc5.1) is a consequence of (kc5.2). It is straightforward to prove that
SDPI is sound and complete w.r.t. its Kripke semantics.

It should also be noted that SDPI admits the definition of a bottom formula:
indeed, ⊥α =de f (Oα ∧ O¬α) ∧ �α is such that ⊥α `SDPI β for every α and β .
However, it is still possible to define a Kripke structure for SDPI with an isolated
world w such that vw(Oα) = 1 for every α (and, in particular, with vw(O⊥α) = 1).
This is why the accessibility relation is not required to be serial for SDPI, despite
having a bottom formula definable in it.

By using any bottom ⊥, it is possible to define a strong (that is, explosive) nega-
tion in SDPI as ∼α=de f (α→⊥). Note that

O∼α `SDPI O¬α but O¬α 0SDPI O∼α.

Moreover (and this is a general fact of paraconsistent logics having a bottom for-
mula), SDPI is a LFI such that the consistency operator is defined à la da Costa as
follows: ◦α=de f (α∧¬α)→⊥. That is, ◦α=∼(α∧¬α).

Theorem 2.13. SDPI is both a LFI and a LDI. Moreover, conflicting obligations
involving a deontically consistent sentence trivialize.

This shows that this system has a reasonable expressive power, despite being
based on a LFI weaker than mbC. Arguably, SDPI could be considered as the mini-
mal paraconsistent version of SDL or, more precisely, of eSDL∗, the version of SDL
over ForO� obtained from SDPI by adding the axiom schema �α. As expected, the
accessibility relation of any Kripke structure for eSDL∗ must be serial.

To finalize, it can be observed that while DmbC and SDPI are both LFI’s and
LDI’s, they are different in nature. While the former has the consistency operator ◦
as a primitive and the deontic consistency operator is derived, the latter follows the
opposite way: the deontic operator � is primitive, and the consistency operator is
derived.
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2.2.4. The logic C D
1

Now we shall briefly analyze C D
1 . As mentioned above, C D

1 is obtained from C1
by adding some deontic axioms. Recall that C1 is defined over the basic language
For (where α◦ =de f ¬(α∧¬α)) by means of rule (MP), axioms (Ax1)-(Ax10) (see
Definition 1.2) and:

(bC1) α◦→ (α→ (¬α→ β))

(ca1) (α◦ ∧ β◦)→ (α∧ β)◦

(ca2) (α◦ ∧ β◦)→ (α∨ β)◦

(ca3) (α◦ ∧ β◦)→ (α→ β)◦

The last three axioms state that consistency is “propagated” through the connec-
tives (it can be proved that α◦→ (¬α)◦). Different to mbC, the classical negation is
defined as ∼α=de f ¬α∧α◦.

Definition 2.14. The logic C D
1 is defined over language ForO by adding to C1 the

following:

Axiom schemas:

(O-K) O(α→ β)→ (Oα→Oβ)

(O-D) Oα→∼O∼α

(ca4) α◦→ (Oα)◦

Inference rule:

(O-Nec)
` α
`Oα �

Despite being formally analogous to axiom (D) of SDL, axiom (O-D) is equiva-
lent to (O-E)◦ of DmbC, at it can be easily proved. Thus, the conception of C D

1 is
close to that of DmbC. It could be said that the modal extension of C1 producing C D

1
is in essence the same modal extension of mbC producing DmbC: the only additional
modal axiom is (ca4), concerning the preservation of consistency through the op-
erator O. But this makes sense, because the preservation of consistency through
the connectives is a general principle of C1. By defining deontic consistency as
�α=de f O(α◦), it can be proved the following:

Theorem 2.15. C1 is both a LFI and a LDI.
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2.2.5. The logic SDmbC

The next step is the presentation of deontic systems which are LFI’s but are not LDI’s.
This is the case of SDmbC and BDmbC, introduced in (Peron & Coniglio 2008). As
we shall see, the former is a paraconsistent logic deontically explosive; the latter is
a bimodal deontic system, being deontically explosive with respect to one modality,
and deontically paraconsistent with respect to the other.

Definition 2.16. The logic SDmbC is defined over For◦O by replacing in DmbC
(recall Definition 2.6) axiom (O-E)◦ by

(O-E)∗ Ofα→⊥α where fα = (α∧¬α) and ⊥α = (α∧¬α)∧ ◦α �

It is worth noting that SDmbC is a paraconsistent deontic logic, but it is not a
deontically paraconsistent logic (cf. Theorem 2.17 below). As in the case of DmbC,
if the axiom schema ◦α is added to SDmbC then it is obtained eSDL, the version of
SDL over For◦O. This situation is analogous to the relation between mbC and eCL,
the version of CL over For◦, described in Section 1.

With respects to the semantics for SDmbC, it is enough to extend the Kripke
semantics for DmbC (cf. Definition 2.7) by adding to the valuation mappings the
following clause:

(kc7) vw(O¬α) = 1 implies vw′(α) = 0 for every w′ in W such that wRw′.

Clause (kc7) expresses that it is impossible to have conflicting obligations in a
world w. As shown in (Peron 2009), the following results hold:

Theorem 2.17.
(i) SDmbC is a LFI.
(ii) SDmbC is deontically explosive and so it is not a LDI.

Theorem 2.18. SDmbC is sound and complete with respect to its Kripke semantics.

Another interesting feature of SDmbC is that the strong negation ∼ and the
paraconsistent negation ¬ collapse within the scope of the deontic operator.

Theorem 2.19. O¬α a`SDmbc O∼α.
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2.2.6. The logic BDmbC

The systems DmbC and SDmbC can be interesting in the analysis of deontic para-
doxes, as we shall see in the next section. However, a logic combining both sys-
tems can enrich this analysis. Such a logic, called BDmbC, is obtained by combining
DmbC and SDmbC, in a way that one deontic operator behaves as in DmbC, whereas
the other behaves as in SDmbC.

The idea of considering paraconsistent bimodal deontic logics is not new. In
Puga, da Costa & Carnielli 1988 a bimodal system defined over C1 called C1 having
a deontic operator O and an alethic operator � was presented. Some interactions
between both operators where forced, namely Oα→ ◊α (where, as usual, ◊α =de f
¬�¬α is the “possibility” operator) and �α → Oα. This principles are based on
ideas by Kant and Hintikka, respectively. Since �α→ α is an axiom of C1 then this
logic is both a LFI and a LDI with respect to both modalities, where consistency and
alethic consistency of α are expressed by the same sentence, namely α◦; on the other
hand, the deontic consistency of α is expressed by O(α◦).

Our proposal, however, is different, by several reasons. On the one hand, both
modalities of BDmbC are deontic, in contrast to C1 in which one modality is alethic.
On the other hand, BDmbC is deontically explosive with respect to one modality and
deontically paraconsistent with respect to the other, in contrast to C1 in which both
modalities are not explosive, as mentioned above.

Definition 2.20. The logic BDmbC – Bimodal Deontic mbC – is defined in the set
For◦OO of sentences generated by O,O,◦,¬,∧,∨,→ by adding to mbC the follow-
ing:

Axiom schemas:

(O-K) O(α→ β)→ (Oα→Oβ)

(O-K) O(α→ β)→ (Oα→Oβ)

(O-E)◦ O⊥α→⊥α where ⊥α =de f (α∧¬α)∧ ◦α

(O-E) Ofα→⊥α where fα =de f α∧¬α

(BA) Oα→Oα

Inference rules:

(O-NEC)
` α
`Oα

(O-NEC)
` α

`Oα
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�

The operator O can be interpreted as “classically obligatory”; this notion is ex-
pressed in (O-E). On the other hand, O is interpreted as “weakly obligatory”, as
expressed in (O-E)◦. However, an additional interaction between both operators is
intended: namely, it is convenient that O be “stronger” or “stricter” than O, which
justifies the inclusion of (BA). This axiom was inspired by the analogous one pre-
sented in the bimodal system KT�, cf. Carnielli & Pizzi 2008.

The logic BDmbC suggest an additional analogy between LFI’s and LDI’s. Just
as mbC is ¬-paraconsistent but it is not ∼-paraconsistent, the theorem below shows
that BDmbC is O-paraconsistent but it is not O-paraconsistent. The details of the
proof are left to the reader.

Theorem 2.21.
(i) BDmbC is a LFI.
(ii) BDmbC is a LDI with respect to O.
(iii) BDmbC is deontically explosive with respect to O and so it is not a LDI with
respect to O.

As expected, the semantics for BDmbC is given by Kripke structures having two
accessibility relations, one for each modality. In details:

Definition 2.22. A Kripke structure for BDmbC is a tuple 〈W, R, R, {vw}w∈W 〉 where:

1. W is a non-empty set (of possible-worlds);

2. R ⊆ W ×W and R ⊆ W ×W are relations (of accessibility) between worlds
which are serial;

3. R⊆ R;

4. {vw}w∈W is a family of mappings vw : For◦OO → 2 satisfying clauses (kc1-
kc6) of Definition 2.7 plus the following clauses:

(kc6.1) vw(Oα) = 1 iff vw′(α) = 1 for every w′ in W such that wRw′,

(kc7.1) vw(O¬α) = 1 implies vw′(α) = 0 for every w′ in W such that wRw′. �

The proof of the completeness of BDmbC with respect to its Kripke semantics
can be found in Peron 2009. Since in BDmbC the operator Oα behaves as in DmbC,
as long as O has the same behavior as the deontic operator of SDmbC, it is easy to
prove (by semantical means) the following result:
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Theorem 2.23. In BDmbC:
O¬α a`BDmbC O∼α holds,
but O¬α a`BDmbC O∼α does not hold.

Of course it is possible to consider a plethora of paraconsistent deontic logics
and LDI’s by taking different LFI’s and/or with combinations of (O-E) and (O-E)◦

(as it was done with BDmbC). In particular, in (Coniglio 2007) the system DLFI1
based on the logic LFI1 was considered. The latter is a LFI enjoying nice features, for
instance some axioms propagating the inconsistency operator •. Another interesting
point about LFI1 is that it has a simple 3-valued matrix semantics. The deontic
system DLFI1 is both a LFI and a LDI such that the deontic inconsistency operator �
satisfies the following: �α↔ (Oα ∧O¬α). Moreover, � propagates under certain
circumstances, which is an useful tool in the analysis of deontic paradoxes. The
property of propagation of inconsistency resembles the propagation of consistency
enjoyed by C D

1 . However, the underlying paraconsistent logics C1 and LFI1 are quite
different: while the latter is a 3-valued logic, the former cannot be characterized by
finite matrices. Moreover, the propagation properties are not the same.

A previous and related approach to the analysis of modal paradoxes by using
modal LFI’s can be found in Costa-Leite 2003, where a paraconsistent alethic system
called CiT was proposed in order to analyze Fitch’s paradox of knowability. The
system CiT is is a modal extension of Ci, a LFI introduced in Carnielli & Marcos
2002.

Instead of defining more and more paraconsistent deontic systems and LDI’s,
the next section will analyze a classical deontic paradox, the so-called Chisholm’s
paradox, in the context of some of the system considered in this section.

3. Chisholm’s Paradox

In general, a deontic paradox consists of a set of sentences in natural language, in-
tuitively consistent and without logical dependencies such that, when formalized in
a deontic language, it is logically trivial or it has logical dependencies. This situation
occurs more frequently when the given sentences refer to norms, laws and moral
principles: in this case contradictions can arise. Thus, most of such paradoxes are
originated when the given set of premises is formalized in SDL as a set Γ of logically
independent sentences, but conflicting obligations such as Oα and O¬α are derived
from Γ within SDL. As pointed out in (McConnell 2006), the problem is related to
the difficulties of SDL for dealing with contrary-to-duty obligations.

In this section, the well-known Chisholm’s deontic paradox will be analyzed un-
der the light of some LDI’s discussed in the previous section. The aim is to show to
what extent the paraconsistentist approach to deontic paradoxes can be fruitful.
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One of the first deontic paradoxes was proposed in Chisholm 1963. The follow-
ing formulation of it was given in Åqvist 2002.

Consider the set C formed by the following sentences:

(1) It ought to be that John does not impregnate Suzy Mae.

(2) Not-impregnating Suzy Mae commits John to not marrying her.

(3) Impregnating Suzy Mae commits John to marry her.

(4) John impregnates Suzy Mae.

Let A and B be propositional letters representing the sentences “John impregnates
Suzy Mae” and “John marries Suzy Mae”, respectively. It is possible to formulate the
set (1)–(4) above in a deontic language in several ways. In order to simplify the
presentation, the following notions will be useful.

Definition 3.1. Consider in Dmbc the following derived deontic operators:
(i) F1α=de f O¬α (prima-facie prohibition)
(ii) F2 =de f O∼α (strong prohibition) �

The name of such operators is inspired by Ross 1930.
Returning to the set C , it is clear that (1) admits two formulations in Dmbc:

F1A and F2A. By its turn, (2) has three interpretations: ¬A→ F1B, ¬A→ F2B and
O(¬A→¬B). Analogously, sentence (3) can be formalized as A→ OB or O(A→ B).
Being so, there exist 12 possibilities to formalize the set C , which are conveniently
arranged below:

Γ1.1 = {F1A,¬A→ F1B,A→OB,A}

Γ1.2 = {F1A,¬A→ F2B,A→OB,A}

Γ1.3 = {F2A,¬A→ F1B,A→OB,A}

Γ1.4 = {F2A,¬A→ F2B,A→OB,A}

Γ2.1 = {F1A,O(¬A→¬B),A→OB,A}

Γ2.2 = {F2A,O(¬A→¬B),A→OB,A}

Γ3.1 = {F1A,O(¬A→¬B),O(A→ B),A}

Γ3.2 = {F2A,O(¬A→¬B),O(A→ B),A}

Γ4.1 = {F1A,¬A→ F1B,O(A→ B),A}
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Γ4.2 = {F1A,¬A→ F2B,O(A→ B),A}

Γ4.3 = {F2A,¬A→ F1B,O(A→ B),A}

Γ4.4 = {F2A,¬A→ F2B,O(A→ B),A}

Clearly some of the sets above are not appropriate because some logical depen-
dencies are present. This is exactly the paradoxical aspect of the set C , because
it is consistent and the sentences are logically independent. Now we will analyze
Chisholm’s paradox in some of the deontic systems defined above.

3.1. Analysis in SDL

Given that in SDL just one ‘prohibition’ operator is definable in SDL (because just
classical negation is present) then the unique candidates to formalize C in SDL are
Γ1.4, Γ2.2, Γ3.2 and Γ4.4. But the following laws hold in SDL:

`SDL α→ (¬α→Oβ) and `SDL O¬α→O(α→ β).

Then, (2) and (4) are logically dependent in Γ1.4; (1) and (3) are logically dependent
in Γ3.2; by its turn, (1) and (3), on the one hand, and (2) and (4), on the other, are
logically dependent in Γ4.4.

So, the unique alternative in SDL is Γ2.2. But then OB follows by (MP) between
(3) and (4). On the other hand, `SDL O(¬A → ¬B) → (O¬A → O¬B) and so,
by (MP) two times it follows O¬B. That is, the set Γ2.2 is logically trivial in SDL,
arriving so to a paradox.

3.2. Analysis in DmbC

Moving now to DmbC, there are much more alternatives for choosing a set Γi. j ,
because there are less logical interdependencies.

By taking appropriate Kripke structures, it is easy to prove that

2DmbC α→ (¬α→O¬β) and 2DmbC α→ (¬α→O∼β).

Moreover, by using Kripke structures it is easy to see that the sentences in Γ1.1, Γ1.2,
Γ1.3 and Γ1.4 are logically independent in DmbC. The independence of the premises
in Γ2.1, Γ2.2, Γ3.1, Γ4.1 and Γ4.2 is obtained by analogous arguments. By (O-K) and
(MP), OB is derived from Γ1. j (for 1 ≤ j ≤ 4) and also from Γ2.1 and Γ2.2. By a
similar argument, O¬B is derived from Γi. j (for i. j = 2.1, 2.2, 3.1). This means that
Γ2.1 and Γ2.2 are deontically contradictory.
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Concerning the set Γ3.2, note that `DmbC ∼A → (A → B) and then, by (O-Nec)
and (O-K) there is a dependence between (1) and (3). Then, this set cannot be used
for the analysis. By the same reason the sets Γ4.3 and Γ4.4 must be discarded.

Altogether, there are nine sets logically independent in DmbC formalizing C and
so being potentially useful for the analysis of Chisholm’s paradox, in contrast to SDL
which have just one. Remarkably, none of them are logically trivial and so the nine
sets are relevant for the analysis. It is easy to prove by using Kripke structures that
Γi. j does not deduce O¬B for i. j = 1.1, 1.2, 1.3, 1.4, 4.1, 4.2. By its turn, Γi. j does
not deduce OB for i. j = 3.1, 4.1, 4.2. Thus, all these sets do not infer conflicting
obligations. Finally, Γi. j deduce conflicting obligations for i. j = 2.1, 2.2, but there is
no deontic explosion (and so there is no logical explosion).

Summarizing, in DmbC we have the following scenarios for Chisholm’s paradox:

Γi. j `DmbC OB but Γi. j 0DmbC O¬B for i. j = 1.1, 1.2, 1.3, 1.4

Γ3.1 `DmbC O¬B but Γ3.1 0DmbC OB

Γi. j `DmbC OB,O¬B without trivializing deontically, for i. j = 2.1, 2.2

Γi. j 0DmbC OB and Γi. j 0DmbC O¬B for i. j = 4.1, 4.2

That is, DmbC has enough expressive power to encompass all the possible situa-
tions, namely:

• just OB is derived;

• just O¬B is derived;

• both OB and O¬B are derived, without having deontic explosion (and so,
without trivializing);

• neither OB nor O¬B are derived.

3.3. Analysis in SDmbC

As happens in SDL, in the logic SDmbC the deontic operators F1 and F2 collapse; let
F be the unique prohibition operator in SDmbC. Thus, there are just four possibilities
in SDmbC formalizing C , namely:

Γ0.1 = {FA,¬A→ FB,A→OB,A}

Γ0.2 = {FA,O(¬A→¬B),A→OB,A}

Γ0.3 = {FA,O(¬A→¬B),O(A→ B),A}
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Γ0.4 = {FA,¬A→ FB,O(A→ B),A}

It is easy to see that in SDmbC it holds:

2SDmbC α→ (¬α→Oβ) but �SDmbC O¬α→O(α→ β)

and so Γ0.3 and Γ0.4 are discarded because there are logical dependencies among
the premises. On the other hand, Γ0.2 trivializes in SDmbC, because this system
does not accept conflicting obligations. Thus, the only admissible set is Γ0.1 which
satisfies the following:

Γ0.1 `SDmbC OB but Γ0.1 0SDmbC O¬B.

That is, Chisholm’s paradox can again be avoided, producing the expected result:
John has to marry Suzy Mae.

3.4. Analysis in DPI and in SDPI

Since DPI admits just one negation, namely the paraconsistent one, just the sets Γ0. j
(for j = 1, . . . , 4) of SDmbC are obtained, with Fα = O¬α. As expected, Γ0.1 just
derives OB; Γ0.3 just derives O¬B; Γ0.2 derives both OB and O¬B without deontic
explosion (and so without trivializing); and Γ0.4 neither derives OB nor derives O¬B.

Concerning SDPI, the same results obtained for DmbC hold in this logic, mutatis
mutandis.

3.5. Analysis in BDmbC

The logic BDmbC validates all the inferences in DmbC about O, as well as the in-
ferences of SDmbC about O. Moreover, three prohibition operators can be defined:
O¬α, O∼α and O¬α. Since two obligation operators are available, namely Oα and
Oα, there are much more alternatives to formalize the set C . Being an extension
of DmbC, all the possible situations for the paradox described in Subsection 3.2
can also be obtained in BDmbC. However, since there are two kinds of obligations
in BDmbC, there are strictly more possible situations than in DmbC. Namely, the
following obligations concerning B are obtained from the different sets of premises:

• just OB is derived;

• just OB (and so OB) is derived;

• just O¬B is derived;

• just O¬B (and so O¬B) is derived;
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• OB and O¬B are derived, without having deontic explosion;

• OB (and so OB) and O¬B are derived, without having deontic explosion;

• neither OB (nor OB) nor O¬B (nor O¬B) are derived;

• everything is derived (logical explosion).

3.6. Summarizing

To summarize, all the plausible answers to the question “Should John marry Suzy
Mae?” are obtained in DmbC, DPI and SDPI. In the case of BDmbC, there are still
more variants for the answers (even the logical explosion can be attained), as shown
above. On the other hand, SDmbC produces just one answer, the intuitively expected
one. In contrast, SDL just produces logical explosion (or logical dependencies).

The main point of our analysis lies in the fact that Chisholm’s paradox is not ex-
clusively based on the violation of the Principle of Deontic Consistency as presented
frequently in the literature (this position is defended, for instance, in (Prakken &
Sergot 1994)). The analysis above suggests that the logical dependence between
the premises in C (dependency arising because of the use of classical logic) plays
an important role. Thus, in SDmbC the principle of deontic explosion is maintained
while rejecting the principle of explosion, and then it is possible to avoid the para-
dox. That is, by eliminating some logical dependencies typical of classical logic, the
paradox vanishes. In the case of DmbC, DPI and SDPI, both principles of explo-
sion are weakened and so there are more possibilities to avoid the paradox. Finally,
BDmbC combines DmbC and SDmbC, obtaining still more solutions to the paradox
by combination of its deontic operators.

4. Final remarks

Our analysis departs from the transposition of the approach to paraconsistency of
LFI’s to the deontic context. This allows to consider notions such as deontic explosion
and deontic paraconsistency.

The Logics of Deontic (In)Consistency seem to encompass several paraconsistent
deontic systems already proposed in the literature, suggesting the definition of a tax-
onomy of such systems, in a similar way as the proposal for LFI’s started in Carnielli
& Marcos 2002.

The approach to Chisholm’s paradox presented here is based on the generality
of LDI’s, and so it is possible to obtain solutions to the paradox based on the lack
of logical dependencies and/or the elimination of the principle of deontic explosion.
The distinction between the two sources of paradox can be useful to analyze other
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deontic paradoxes, as those presented in Prakken & Sergot 1994, Prakken & Sergot
1997 and Carmo & Jones 1997.

Clearly, the research on paraconsistent deontic logic and deontic paradoxes has
several possibilities of further development. We hope that our discussion can con-
tribute to some extent to the analysis of the interesting question of deontic paradoxes
and related areas.1
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Resumo. As Lógicas da (In)Consistência Deôntica (LDI’s) podem ser consideradas como
sendo a contraparte deôntica das lógicas paraconsistentes chamadas de Lógicas da (In)Con-
sistência Formal. Neste artigo são introduzidas e estudadas novas LDI’s e outras lógicas deôn-
ticas paraconsistentes satisfazendo diferentes propriedades: sistemas tolerantes a obrigações
contraditórias; sistemas em que as obrigações contraditórias produzem trivialização; e uma
lógica deôntica paraconsistente bimodal que combina as características de sistemas previ-
amente introduzidos. Estas lógicas são utilizadas para analisar o conhecido paradoxo de
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Chisholm aproveitando-se do fato de que, além que as obrigações contraditórias não triviali-
zam nas LDI’s, varias das dependências lógicas da lógica clássica são bloqueadas no contexto
das LDI’s, permitindo assim dissolver o paradoxo.

Palavras-chave: Lógica paraconsistente, lógica deôntica, paradoxos deônticos, paradoxo de
Chisholm, dilemas morais, lógicas da inconsistência formal.
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