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Abstract. There are different ways we use the expressions “extension” and “intension”. I
specify in the first part of this paper two basic senses of this distinction, and try to show that
the old metaphysical sense, by means of particular instance vs. universal, is more fundamen-
tal than the contemporary sense by means of substitutivity. In the second part, I argue that
logic in general is essentially intensional, not only because logic is a rule-guided activity, but
because even the extensional definition of a logic system presupposes an intensional notion
of logical consequence.
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The most distinctive feature of a great thinker is his capacity to show that some
of our most established convictions are not so well founded as we think. Quine’s
criticisms on the notions of meaning and analyticity, Wittgenstein’s criticisms on the
traditional essentialistic notion of concept, Kripke’s criticisms on our intuitive iden-
tification of necessity and apriority are some examples of this kind of challenging
insights of big thinkers. Newton da Costa has the merit of showing that ex falso
sequitur quodlibet (α ∧ ¬α ` β) is not, as we accepted for many centuries, a neces-
sary principle for every logic. Many logicians tried to construct in the last century
new logics suspending one or another principle: suspend monotonicity and you get
non-monotonic logic, suspend bivalence and you get many-valued logic, etc. The
enormous plurality of systems of logic leads many to give up the idea that there is
a common core of all kinds of logic. In this paper I shall discuss the question of
whether there is something that can be considered an essential property of every
system of logic. Indeed, I will argue that intensionality—in a particular meaning of
this ambiguous word—is an essential feature of every kind of logic.

Of course, there are extensional and intensional formal systems of logic. In gen-
eral we consider a system of logic intensional when its variables range over a domain
which includes intensional entities like possible objects, propositions, concepts, qual-
ities, or when some extensional principle is not valid for it. But, provided the char-
acterization of extensionality and intensionality I will give in the first section of this
paper, there is a specific (and more basic) sense of “intensionality”, according to
which we can say that every system of logic, and not only the so called “intensional
logics”, has an intensional nature.
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1. Two Views on Intensionality and Extensionality

There are two basic views concerning the extension-intension distinction. The first
view is more philosophical, we could even say “metaphysical”, and goes back to
Plato. His theory of pure forms was intended as a solution to the problem of “unity
over plurality”. What is the identical nature e.g. of the different instances of red?
What make different red objects red? The theory of universals as unlocated (or
located in a “heaven”) pure forms is his solution: every red thing participates in
(instantiates) the pure form of redness. In this sense redness qua universal is a
kind of rule that determines the extension of red things. But there is a well known
problem here. Let us recall the old example: man and featherless biped are concepts
with different intensions, but both correspond to (determine) the same extension (in
the actual world).

In this first view, the extension is a collection of particular instances, and the
intension is a kind of corresponding rule for determining this collection. To have
an intension corresponding to a given extension is always something desirable in
practice and in theory. In computer science, the rule or intension allows a kind of
“compression of information”: instead of an extensive list of data, we can give a
simple rule for generating this complete list. But also in metaphysics is the inten-
sion desirable: when you discover the intension that precisely corresponds to the
collection of all particular objects that fall under a concept (e.g. each particular ob-
ject truly called “human”) you probably (not necessarily) get the “essence” of this
concept (humanity).

If there is a corresponding intension (a defining concept) to every extension, or a
corresponding extension to every intension, is one of the most difficult questions of
philosophy. Many sceptical arguments in modern and contemporary philosophy are
based on the insight that an extension—conceived as a set or particular instances—
cannot determine (but only sub-determine) a corresponding intension. All these
arguments can be schematically represented by the following graphic:

R � i1, i2, i3, . . .

where R represents the rule (in my sense “intension”) that corresponds to the collec-
tion of particular instances i1, i2, i3,. . . (the “extension”). The double arrow repre-
sents the mysterious relation between them, and different conceptions will emerge
according to the direction you privilege. When you start from the extensions on the
right side and “create” the rule R on the left, you probably have nominalistic ten-
dencies; when you start from the rule R that defines or determines the collection of
particulars instances of the right, you possibly sympathise with Platonism. I think
this can be applied to many different areas and problems of philosophy. But this is
not our issue in this paper.
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The sceptical arguments I meant in the last paragraph are the following. The set
of all observed white swans (i1, i2, i3, . . . ) does not determine (support or verify
in definitive manner) the law (R) that all swans are white, the set of all observed
green (or grue) smaragds (i1, i2, i3, . . . ) does not determine the law (R) that all
smaragds are green, the set of all utterances of “gavagai” (i1, i2, i3, . . . ) does not
determine the meaning (R) of this word, neither does the corresponding reference
(or ontology), the set {0, 1,2, 3, . . .} (i1, i2, i3, . . . ) determine the correct rule that
defines the rule of generation of natural numbers (R), etc. There is a gap between
extensions and intensions that nobody can bypass. In Wittgenstein’s words: a rule
or function is not another way to give the same that a list gives. In a mathematical
example:

f (x) : x2

is not the same as
{〈0,0〉, 〈1,1〉, 〈2,4〉, 〈3,9〉, . . .},

even if we could substitute the dots by the complete list. The acceptance of arbitrary
functions (set of ordered pairs without any corresponding rule) by Lejeune-Dirichlet
was one of the most controversial revolutions in the history of mathematics. Classical
theory of concepts is another case of this extension-intension priority debate: what
is at stake here is the question if all particular instances of application of a given
concept, like game, has a common feature (if there is a rule) or not.

In “Extensionality” R. B. Marcus (1971) offers a good analysis of extensionality
in the sense I call here “the second view”. According to this view, extensionality
can be defined in terms of the principle (or better: one of the many principles) of
substitutivity.

Propositional logic is said to be extensional because its connectives are exten-
sional functions: the truth value of a complex sentence is completely determined by
the truth values of its component sentences, i.e. each sentence can be replaced by
another sentence of the same truth value by preservation of the truth value of the
complex sentence, independently on the meaning and on the modal status of the
substituted sentences. Predicate logic is said to be extensional, (1) because of the
extensionality of propositional connectives just explained, and (2) because any two
predicates F and G, which determine exactly the same extension (∀x(F x ↔ Gx))
can substitute each other in every formulae salva veritate. I.e. only the extension
and not the intension of a predicate is relevant for determining the true value of
a formula. Something analogous can be said about set theory, mereology, exten-
sional contexts in semantics, etc. We can say in general that a context is extensional
when different particular instances of a given equivalent class are considered in this
context identical and inter-substitutable for some functional purposes. Or, alterna-
tively, we can say that a context is extensional when some (intensional) aspect is
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deliberately ignored. This can be represented by a simplified schema:

Ei = {i1, i2, i3, . . .}
E j = { j1, j2, j3, . . .}
. . .







f (. . . , . . .) ⇒







A
B
. . .

The equivalent classes Ei , E j , . . . are built up of particular instances (i1, i2, i3, . . . ,
and j1, j2, j3, . . . ) that are equivalent in respect to a particular (intensional) aspect
(i, j, . . . ), such that these instances are mutually substitutable in the functional
structure f (. . . , . . .) with the image A, B, . . . The interpretation of this schema is
easy for every case. In propositional logic Ei and E j represent the truth values T and
F, i1, i2, i3, . . . all true and j1, j2, j3, . . . all false sentences. A and B are the truth
values of complex sentences (in this case, therefore, A and B coincide with Ei and
E j), and the function f (with arity 1 or 2) is one of the connectives (¬, ∧, ∨, →).
The excluded or ignored intensional aspect in this case is the meaning (and even
complexity) of each sentence: “2+2= 4” and “the sky is blue” are indistinguishable
in propositional logic.

In semantics Ei , E j , etc. represent different objects (references of singular terms)
or properties (references of predicates), “i1, i2, i3, . . . ” different singular terms (or
predicates) all of which refer to the same object (i) (or property) and “ j1, j2, j3, . . . ”
different singular terms (predicates) which refer all to one other object ( j) (prop-
erty). Note the interesting point: the intensional equivalence of the i-members (or
of the j-members) is based here on co-referentiality, i.e. in having the same exten-
sion. The function f is a n-placed predicate and A and B represent the truth-values
T and F. The excluded intensional aspect here is the meaning (Sinn) of the differ-
ent singular terms (e.g meaning from “morningstar” and “eveningstar”)—the truth
value of the sentence is invariant to the mode of presentation. Exactly this inten-
sional aspect becomes relevant in epistemic and modal contexts. Note that this kind
of substitution is not only valid for coreferentiality: even if the predicates F and G
express (intensionally) different properties (e.g. human and featherless biped), they
can be substituted by each other when coextensional, too. The excluded semantical
intensional aspect is the difference of (intensional) properties.

The interpretation for set theory is also easy. We can interpret Ei and E j (etc.) as
collections of elements and “i1, i2, i3, . . . ” as different ways of designating them (e.g.
i1 = {11,13, 17,19}, i2 = {19, 17,13, 12−1}, i3 = {x : x is prime and 10< x < 20},
etc.). The functional structure f (. . . , . . . ) can be interpreted as any set theoretical
relation (e.g. “⊂”) and A and B as truth-values; thus, we can say that the true of set
theoretical propositions is fully determined by the extension of a set, i.e. that sets
with the same extension can always be substituted salva veritate. Or, alternatively, we
can interpret f (. . . , . . . ) as an operation (e.g. “Ei ∪ E j”) and A and B as the result of

Principia 14(10): 111–24 (2010).



Logic and Intensionality 115

the operation; thus, we can say that set theory is extensional because all operations
are fully determined by the extension of a set, i.e. the result of the operation is
fully determined by the extension of the sets we operate. In any case, the excluded
intensional aspect in set theory is the order, the way of designating and the nature
of the elements.

Mereology is an extensional theory of collections for the same reason as set the-
ory: its collections are invariant in respect to order or way of determining the ele-
ments. Thus, two mereological wholes A and B are fully determined by its parts, i.e.
the whole is an extensional function of its parts. But we can say that mereology is
even “more extensional” than set theory. In mereology another implicitly intensional
element becomes neutralized, namely the hierarchy by the generation of the collec-
tion. Mereology represents an extensionalisation of the theory of collections in terms
of the generation of complexes from the primitive elements. In set theory Ei repre-
sents the class of co-extensional collections i1, i2, i3, . . . and the difference between
i1 and i2 becomes irrelevant. Nevertheless, set theory still recognizes a difference
between collections with the same primitive elements when these elements are col-
lected at different levels, e.g. {m, n} 6= {{m}, {{n}}}. The nesting of “{” and “}” in set
theory generate new different entities (of new levels). In mereology this intensional
distinction disappears, i.e. the hierarchical structure of levels is extensionalized and
eliminated. For mereology {m, n} is not only identical to {n, m}, but also to {m, {n}},
{{m}, {n}}, {m, {{n}}}, etc. If we take some primitive ur-elements to form a mere-
ological collection, then the whole A (the mereological fusion) is fully determined
by them, independently of order or level of generation. The generation of infinitely
many sets in pure hierarchichal set theory has no correspondence in mereology.

The difference between set theory and mereology can also be shown by means
of Marcus analysis. Take the principle:

If ∀x(F x eq∗ Gx) then F eq∗∗ G.

In set theory eq∗ must mean material biconditional and predication F x is interpreted
by means of ∈. Thus, if all elements of F are also elements of G and vice-versa,
F is eq∗∗ (is identical with) G. But let us now interpret “F x” mereologically as
“participating in the constitution” or “x is an element which occurs ‘anywhere’ in the
collection F”), then F eq∗∗ (identical to) G for mereology, but not necessarily for set
theory.

The same kind of extensional reasoning could be applied to semiotics: Ei and E j
can be seen as equivalent classes of similar signs (e.g. i1 = cat, i2 = cat, i3 = cat,
. . . ) or sounds. We have to grasp different tokens of signs as instances of the same
type. Without the ability of recognizing similar patterns, language (and also knowl-
edge) it would become impossible. Another interpretation concerns meaning. If we
interpret Ei and E j as an equivalent class of synonymous signs or expressions (i1
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= “bachelor”, i2 = “not married”, . . . ), that can be words or sentences, we have a
classical conception of meaning (the meaning of a word or a proposition). Even en-
emies of the notion of meaning must assume such a kind of class of equivalence for
explaining natural semantics: (relative) equivalent linguistic behaviour or (relative)
equivalent stimuli. And since this class of equivalence is, strictly speaking, an inten-
sional entity (as should be argued in the two next sections of this chapter), we could
derive an argument for the objective existence of things like meanings and concepts
(if someone defines concepts as meanings of words, contrary to this paper).

Let us extend the interpretation into the domain of propositional logic. Given the
fact that for every sentence α and β , “α→ β” is a formal equivalent of “¬β ∨α”, we
could say that the complex sentences “α→ β” and “¬β ∨α” (and also “¬(β ∧¬α)”,
etc.) are substitutable salva forma logica. Thus, Ei ({α → β} or the logical form of
conditional) is the class of equivalent formula (i1 = ¬β ∨ α, i2 = ¬(β ∧ ¬α), etc.);
E j (∀x(F x) or the logical form of general quantification) the class of the equivalent
formula (i1 = ¬∃x¬(F x)). I think this was Wittgenstein’s insight in the Tractatus,
which led him to the assertion that Russell’s and Frege’s logical notation were not
fully adequate. In a correct notation, there could be no possibility of redundancy
in logic. He suggested considering all equivalent forms like {α → β}, {¬β ∨ α},
{¬(β ∧¬α)}, etc. as reducible to the unique sequence 〈T, F,T, T〉.

To sum up, we can say in general that a context is extensional in respect to an
aspect P when it recognizes classes whose members are equivalent in respect to P, but
different in respect to (intensional) property Q, such that they are substitutable pre-
serving property R. Propositional logic is invariant in respect of the content of its
propositions (Q), just their truth-value (P) are relevant for the purpose of logical
operations (R); extensional semantic contexts are invariant in respect to the mode
of presentation of the reference (Q), just the reference (P) determines the truth
value of sentences (R); sets are invariant in respect to order or mode of presentation
(Q) of elements, just what elements compound a set (P) is relevant for its identity
and for set operations (R); mereology is invariant in respect to level of composition
(and order or mode of presentation of elements) (Q), just what primitive elements
compound the complex (P) is relevant for the identity of fusions (R).

A context is called intensional when we can recognize within this context fine
differences overlooked in extensional contexts: the members of equivalent classes
are recognized as different. We could also say that intensionality is characterized
by its fine granularity, or by its higher degree of differentiation. These intensionally
different entities form together a class of equivalence in which intensional differ-
ences “disappear” (they can be considered in this context irrelevant). But these
differences are recognized in a more perspicuous analysis with the introduction of
an “intensional” point of view. Insofar as predicate logic recognizes the difference
of the content of true sentences (e.g. between “2+ 2 = 4” and “Sky is blue”), it is,
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in some sense, more intensional than propositional logic. Insofar as propositional
modal logic recognizes the differences between modi of being true (contingent or
necessary truth), it is more intensional than non-modal propositional logic. Insofar
as modal context and context of propositional attitude recognizes the difference be-
tween modes of presentation (e.g. “Plato” and “the author of Republic”), it is more
intensional than direct contexts. Finally, insofar as set theory recognizes the differ-
ence between different levels of organization of collections of the same urelements;
it is more intensional than mereology.

Now, how should we think about the relation between the two views of the
intension-extension distinction? One could suppose that this second view is techni-
cally much more sophisticated and, thus, much more interesting than the first one.
But I think that the reverse is the case. Note that the second view can be defined
in terms of the first one. The set determined by a rule or intension (in the first
view) forms an equivalent class, and the elements of this equivalent class are ex-
actly the kind of substitutable instances of the principle of substitution that defines
extensional contexts of the second view. Propositional logic is extensional because
all instances (in this case, propositions) of the universal is true (and all instances of
is false) are substitutable, predicate logic is extensional because all instances (in this
case predicates) of coreferencial with a given predicate F are substitutable, etc. In a
word, every case of substitution salva veritate is defined by means of substitution of
instances of a set (or equivalent class) of things that satisfy a given condition, i.e. that
obey a certain rule. The particular instances i1, i2, i3, . . . in the graphic above are
instance of the rule Ei . Substitutibility of extensional contexts is always grounded in
the fact that different substitutable particular instances obey (are instances of) the
same intensional rule. Thus, we could say that the first “metaphysical” view is more
basic insofar as the second view depends on and can be defined in terms of the first
one. And when I propose now that logic is essentially intensional, this should be
understood according to the first view. Of course, if logic is a rule-governed activity
and rules are intensional entities, logic is intensional in a trivial sense. But I think
that logic is intensional in a stronger and more interesting sense.

2. On the Intensionality of Logic

For our analysis on the nature of logic we just need to remember: Intensions are
“rule-type” entities, and extensions are collections of particular instances correspond-
ing (or not corresponding, that’s the matter in question!) to those rules. In order
to show that logic is essentially intensional in my sense, I will argue that its central
notion—that of logical consequence or deducibility—is intensional.

Now, before we begin with the argument concerning logical consequence, let us
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see an analogous case: the notion of identity. There are many questions concerning
definition, criteria, etc. that philosophers have been trying to explain for centuries.
Given any set {a, b, c, . . .} one could define identity as the diagonal of the Cartesian
product of this set by itself. Of course, this definition only makes sense when we
suppose a standard diagrammatic organization of sets:

{a, a}, {a, b}, {a, c}, {a, d}, . . .
↘

{b, a}, {b, b}, {b, c}, {b, d}, . . .
↘

{c, a}, {c, b}, {c, c}, {c, d}, . . .
↘

{d, a}, {d, b}, {d, c}, {d, d}, . . .

Quite right! The diagonal set {{a, a}, {b, b}, {c, c}, {d, d}, . . .} is indeed exactly the
identity set. This is extensionally correct. But again: extensions do not determine
intensions. It would be naive to think that with this definition we can solve any
interesting philosophical question concerning identity. Note that “to be an element
of the diagonal of the Cartesian product” is an intension in our sense: it is a rule, and
so this definition is, in some sense, intensional. But this is a “wrong” intension. The
notions of diagonal and of Cartesian product have no relevance for explaining in an
interesting sense the concept of identity. There is no philosophical gain by analysing
the notion of identity by means of the diagonal of the Cartesian product of a set. To
be in the diagonal is only relevant for identifying univocally the identity set in virtue
of a philosophically irrelevant diagrammatic strategy of organizing the sets of the
Cartesian product of a given set. Now, let us see the logical notion of deducibility.

Logic needs a language to be formulated. Logicians usually take a set of primitive
signs and syntactical rules which define well-formedness, i.e. the set of well-formed
formulae (wff) of a language L, since not every string of primitive signs is an ex-
pression of the language. Syntactical rules are necessary for deciding which strings
are genuine expressions of that language. The syntactical rules determine the ex-
tensional series of all (in general infinite) wff’s. E.g. the rule “if A is a wff of L and
B is a wff of L, then (A∧ B) is a wff” “comprises” the collection “a ∧ b, c ∧ (a ∧ b),
d ∧ (c ∧ (a ∧ b)), . . . ”. Even if we could start with the set of all possible strings of
primitive signs of predicate logic (also including strings like “x F¬ → ∀F∃”) as “al-
ready given in a kind of Platonic heaven”, and if the syntactical rules were regarded
as rules for “picking up” wff’s from this set, these rules are intensional, in the same
sense that the intension of the concept red “tells” us how to “pick up” red things
in the world. It is not difficult to give an inventive rule for organizing formulae in
a diagram such that wff’s were in the diagonal of all strings of the primitive signs.
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Thus, one could say that because of intensionality of language, logic is also intrin-
sically intensional. But this would be overhasty. We could also extensionally define
a language listing all wff s, in particular when we are modest enough to accept a
language with finitely many expressions.

Now, a language becomes a logical system when we introduce rules for estab-
lishing valid inferences between sets of wff’s. Thus, from the extensional point of
view, we could say that the inference rules of a given system of logic define a subset
of the Cartesian product P(L)× P(L) of wff’s of L. But which subset? The diagonal
one? Of course not. And exactly at this point logic become essentially intensional.

Logical systems have the power, given a finite set of rules, to regulate all logically
valid inferences, i.e. to determine the relations of deducibility which subsist between
subsets of wff’s of L. In standard first order logic we distinguish three infinite sets
of formulae: contradictions, tautologies and contingent formulae. The list of all
(infinite) tautologies of a formal system of logic provides an extensional definition
of this system. Of course, instead of giving the exhaustive list of all tautologies,
we usually define a system listing the rules of inference. The rules of inference
determines also for each contingent formulae α we take as premise three classes of
formulae: all consequences of α, all formulae incompatible with α and all formulae
logically independent of α. The interesting point here is the relation between the
set of logical consequences of α and α. We can define the general task of logic as
establishing rules that define the relation of deducibility Γ ` Σ: given any arbitrary
set of premisses Γ the rules determine the set Σ of valid inferences. Given our
general intension-extension schema

R � i1, i2, i3, . . .

the R represents in the case of logic the relation of deducibility and the instances i1,
i2, i3, . . . are ordered pairs of sets of wff’s. Thus, for standard propositional logic
e.g. R is the intensional rule `PL, and

〈 {α}, {α,α∨ β ,β → α,¬¬α, . . .} 〉
〈 {α∧ β}, {α,β ,α∨ β ,β → α,α→ β , . . .} 〉
. . .

are the particular instances. Strictly speaking, each particular inference rule is an
intension that determines a corresponding extension. Thus, modus ponens e.g. is a
rule that determines the extension

〈 {α,α→ β}, {β} 〉
〈 {α∧ β ,α∧ β → γ}, {γ} 〉
. . .
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Since a proof normally contains different rules combined in sequence, the set of
instances i1, i2, i3, . . . corresponding to the ` is not simply the union of the sets of
instances of each particular rule of the set. The ordered pair 〈{α,α→ β}, {β}〉 e.g.
is an instance of `PL although it is neither an instance of the rule modus ponens nor
of the rule of elimination of conjunction.

The analogy to the intension-extension distinction made in the first section con-
cerning concepts is easy: as the intension of a concept determines the “right” col-
lection of all particular instances which fall under it, thus a logic determines “the
correct” (or “one correct” for each different logic) set of wff’s (Σ) that follow from
each set of premises (Γ). My main point is: a pure extensional identification of all
sets of formulae does not define the essence of a particular logic. This is Dummett’s
point, too, when he writes:

We can, thus, imagine a child being taught to discriminate, by syntactic tests,
between valid and invalid arguments of some restricted kind (sentential ar-
guments or syllogisms); if he is taught in a very unimaginative way, he may
see the classification of arguments into valid and invalid ones as resembling
the classification of poems into sonnets and non-sonnets, and so fail to grasp
that the fact that an argument is valid provides any ground for accepting the
conclusion if one accepts the premisses. (Dummett 1973: 454)

Even if we achieved “the” correct subset of the Cartesian product P(L)×P(L) we
could not be sure that we understand the (intensional) concept of “classical logical
consequence”. Someone can simply recite the following set of ordered pairs:

〈 {α}, {α,α∨ β ,β → α,¬¬α, . . .} 〉
〈 {α∧ β}, {α,β ,α∨ β ,β → α,α→ β , . . .} 〉
. . .

without grasping the intension of `PL.
There are two questions we must distinguish here. First: given a particular

logic (a particular set of ordered pairs of wff’s), there is a subdetermination of its
rules (there can be different sets of inference rules that determine the same set of
ordered pairs of wff’s). I am not claiming that different sets of rules that determine
exactly the same set of ordered pairs of wff’s are different logics: of course, different
formulations of standard propositional logic are different formulations of the same
logic. The extension determines the identity of a logic. In this sense, particular
logical systems could be considered extensional: the criteria for identifying a system
of logic are extensional. But this does not imply that logic is extensional in a more
general sense. To individuate an entity is not the same as to give its essence or
nature. My point could be stated in a crude manner: nobody that formulates a logical
system examines the set of ordered pair of wff’s (the list i1, i2, i3, . . . ) and then
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searches for corresponding inference rules that generate this list. And the reason is
a not a pragmatic or purely methodological one, but reflects the nature of making
logic. And this is a first symptom for what I call here “the intensional nature” of
logic.

Second, and more important for our question on the nature of logic: Why are
we not willing to accept every set of ordered pairs of wff’s as a particular “new”
logic? And are there any criteria for deciding if a given set is a particular “new”
logic or not? In this second question we reinterpret our graphic: given the concept
of logic (it is the R now), what particular sets of ordered pairs of wff’s belong to the
corresponding extension i1, i2, i3, . . . ? Some formal properties are usually presented
for defining the classical notion of logical consequence. The most common are:

(1) Consistency: the set Σ of consequences must be consistent if the set or pre-
misses Γ is consistent,

(2) Reflexivity: if α ∈ Σ, then Σ ` α,

(3) Cut or transitivity: if Γ ` α and Γ,α ` β then Γ ` β ,

(4) Monotonicity: if Γ ` α, then Γ,β ` α,

(5) Ex falso: α∧¬α ` β .

But are we willing to accept that these properties really define the essence of
logical reasoning? Most logicians deny this today. On the one side, there are many
systems of logic that do not satisfy these properties (e.g. paraconsistent logic of da
Costa) and today most of us are tolerant enough to accept them as “logical” systems.
On the other side, as I will briefly show, we can construct a set of pairs that satisfy
nearly all these formal properties, and we certainly would not accept it as a kind
of logic. Should a logic satisfy some of them, maybe at least two of them? Which
conditions? I think there is no rule for defining logic in general. How should we
decide e.g. if α is an element of the set of conclusions of ¬¬α or not? Logicians
often argued in this manner: they show that some “intuitively valid arguments” are
not expressible in standard logic, and that, because of this, we need a new logic with
some deviant rules. (But, again, nobody examines a set of ordered pairs of wff’s and
tries to discover the corresponding rules for it.)

Let us suppose that we have the language L and we define our collection of rules
of inference R∗ such that, for every set of premisses Γ there is a corresponding set
of theorems Σ, such that Γ = Σ. This “logic” would be purely a game of reflexivity:
from each formula ϕ we could derive ϕ and nothing more. R∗ satisfies the properties
of consistency, reflexivity, transitivity and monotonicity. Only the rule of ex falso will
not be valid, but not because of trivialization (from α ∧ ¬α we could not infer β ,
but only α ∧ ¬α). Would we really say that this logic constitutes a good system
of inferences? Some might respond positively, some negatively. The most evident
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failure of this “logic” is the absolute absence of any “new” derivable wff’s. We miss
the projective nature of logic—and this projective nature is intensional in my sense.

Another example: let us consider L something like natural English and define
the inference rule set R∗∗ such that we get for every set of premises Γ, when neither
“God exists” nor “God does not exist” are an element of Γ, the set of usual classi-
cal consequences Σ plus “God exists”. Thus, in this logic we have something like
{α∧β} ` {α,β ,α→ β ,α∧β , God exists,α∨β , . . .}. Would we accept this as a “gen-
uine” logical system? I don’t think so. Even satisfying most of the standard formal
properties, we do not automatically get a logic. These two examples show that the
formal properties are not sufficient for defining the essence of logic.

Now, let us see an example that shows that these formal properties are not nec-
essary for defining the essence of logic. This is a short story with a metaphysical
flavour. God is planning the creation of the world and in order to select the best
one, He must first know the infinite set of all possible worlds. But which worlds are
possible, how can He calculate what alternatives are available? In order to calculate
this (of course, for classical metaphysics God does not need calculation, because He
has immediate intuitive knowledge of everything, but this is not relevant here), He
proceeds in the following manner: He takes (randomically or systematically, I do
not know) an atomic proposition φ0 as starting point (this is His premise). Then
He uses a rule we can call “rule of compossibility” RC , i.e. He “infers” the set of
propositions which are compossible with this proposition (e.g. {φ1,φ2,φ3, . . .}, thus
generating a set of pairs of facts in which φ1 is one element (e.g. W1 = {φ0,φ1},
W2 = {φ0,φ2},. . . ). W1, W2, etc. are a kind of “open set”, or “set in creation”, like
bottles into which God puts compossible facts. These are His new sets of “premises”.
Then, God applies the rule of compossible again, generating sets with three proposi-
tions as elements and so on, until He completes all maximal (let us suppose: finite)
sets of compossible propositions—Lindenbaum told us that God can do this. I as-
sume here that compossibility is not only a logical notion (in the sense that φ and
¬φ are not compossible), but also a material one (in the sense that a is red and a
has no extension or a is not coloured are not compossible).

Is GodŠs reasoning a kind of “logic”? I think it certainly is. But note that the
“rule of compossible” RC (the only rule used here) is not reflexive (if φ1 ∈W (W is
a determinate set at a given state), then it is not the case that W `RC φ1, i.e. God
does not introduce into a world W a proposition that is already contained in W—He
does not waste time making a loop). RC is also non-monotonic (it is even “anti-
monotonic”: the more propositions he puts into a world, the less are the compossible
propositions He still can put into it). Further, the ex falso rule is not valid, or better, it
is pointless because it will never come to the situation thatφ∧¬φ. The only principle
GodŠs reasoning follows is transitivity: When God can put φ into the world W , and
also φ∗ into the world W ∪ {φ}, then He also can put φ∗ into W . But there is a
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sense in which compossibility is not transitive (neither has a fixed arity). Take the
propositions

P1: a is taller than b,
P2: b is taller than c,
P3: b is taller than a,
P4: c is taller than a.

P1 is compossible with P2 and P2 is compossible with P3, but P1 is not compos-
sible with P3. Further, P1 is compossible with P2, P2 is compossible with P3, P3 is
compossible with P4, but the four propositions are together not compossible.

Thus, the set of formal properties normally used to characterize which kind of
sets of ordered pairs of wff’s are logic and which aren’t are neither sufficient nor
necessary. We have some intuition about logicality not captured by them. There are
many difficult metaphysical questions concerning identity, and nobody can suppose
that with the extensional definition of identity (such as the diagonal of the Cartesian
product of every set with itself) we can solve any such questions. This would be
extremely naïve. The extensional definition of identity is no help in grasping the
essence of identity. Similarly, the extensional characterization of logical deducibility
by means of a function from subsets of sentences of L to subsets of sentences of L
is inadequate toăreveal the philosophically interesting notion of logical deducibility.
Logic as a science of inferences must be characterized in a more intensional way.
Rules of inference are functions from sets of wff’s to sets of wff’s, but this relation
cannot be an arbitrary relation, it must be an intensional function. What this “inten-
sion” should codify, this is one of the difficult questions of the philosophy of logic.1
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Resumo. As expressões “extensão” e “intensão” são usadas de diferentes modos. Eu espe-
cifico na primeira parte deste artigo dois sentidos básicos da distinção e procuro mostrar que
o antigo sentido metafísico, em termos de instância vs. universal, é mais fundamental que o
sentido contemporâneo em termos de substitutividade. Na segunda parte eu argument que
toda lógica, de modo geral, é essencialmente intensional, não apenas porque lógica é uma
atividade guiada por regras, mas porque até a definição extensional de um sistema lógico
pressupõe uma noção intensional de conseqüência lógica.

Palavras-chave: Extensão, intensão, conseqüência lógica.

Notes

1 Thanks to Prof. Matthias Schirn for important discussions concerning Wittgenstein’s Phi-
losophy of Mathematics and to CAPES/DAAD program for supporting this investigation.
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