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Abstract. In this paper, we present valuation semantics for the Propositional Intuitionistic
Calculus (also called Heyting Calculus) and three important subcalculi: the Implicative,
the Positive and the Minimal Calculus (also known as Kolmogoroff or Johansson Calculus).
Algorithms based in our definitions yields decision methods for these calculi.
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We consider a language containing a countable set of propositional variables, a unary
connective for negation (¬), three binary connectives for conjunction (&), disjunc-
tion (∨) and implication (→) and parenthesis; formula and subformula are define as
usual. The notions of postulate, deduction, proof, theorem, deductive consequence,
etc., are used as in Kleene (1). Let us begin presenting some postulates:

P1. A→ (B→ A)
P2. (A→ B)→ ((A→ (B→ C)→ (A→ C))
P3. A, (A→ B) / B (Modus Ponens)
P4. (A& B)→ A
P5. (A& B)→ B
P6. A→ (B→ (A& B))
P7. A→ (A∨ B)
P8. B→ (A∨ B)
P9. (A→ C)→ ((B→ C)→ ((A∨ B)→ C)

P10. (A→ B)→ ((A→¬B)→¬A)
P11. ¬A→ (A→ B)

As is well known, the Implicative Intuitionistic Calculus (I) is the logic given
by P1–P3; the Positive Intuitionistic Calculus (P), by P1–P9; the Minimal Calculus
(M), by P1–P10; and P1–P11 constitute a basis for the Intuitionistic (Propositional)
Calculus, or Heyting’s Calculus (H). Remember, also, the deduction theorem holds
for all these calculi.
Γ `C A means, as usual, that there is a deduction of the formula A from the set of

formulas Γ in the calculus C. For calculi treated here (as well as other calculi using
the same kind of deductive definitions), we define the concept of an F -saturated set:
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For any formula F , a set of formulas Γ is F -saturated in a calculus C, if:
it is not the case that Γ `C F ; and, for every formula F ′, if F ′ /∈ Γ then
Γ∪ {B} `C F .

It is easy to prove that if Γ is F -saturated in a calculus C, then for any formula A,

Sat1: Γ `C A iff A∈ Γ.

In fact, it is required only that the following usual deductive properties hold:

i) Γ `C A, if A∈ Γ;
ii) If {B1, . . . , Bn} `C A and for 1≤ i ≤ n, Γ `C Bi then Γ `C A.

And since it holds for all these calculi that:

iii) If Γ `C A, then for some finite subset Γ′ of Γ, Γ′ `C A,

we have also for them the Lindenbaum’s style lemma:

Sat2: If Γ 0C F , there is an F -saturated set ∆ such that Γ⊂∆ and ∆ 0C F .

Observe that since I is a subcalculus of P, which is a subcalculus of M, which is
a subcalculus of H, using Sat1 and some almost immediate deductive properties of
these calculi, we easily obtain:

Sat3: If ∆ is an F -saturated set — either in I, P, M or H — then

i) If B ∈∆ then A→ B.
ii) If A→ B ∈∆ then A /∈∆ or B ∈∆.

iii) If A→ B /∈∆ then there is a B-saturated set∆′ (in I, P, M or H, respectively)
such that ∆∪ {A} ⊆∆′.

Sat4: If ∆ is an F -saturated set — either in P, M or H — then

iv) (A& B) ∈∆ iff A∈∆ and B ∈∆;
v) (A∨ B) ∈∆ iff A∈∆ or B ∈∆.

Sat5: If ∆ is an F -saturated set — either in M or H — then

vi) If both A, ¬A∈∆ then for all B, ¬B ∈∆.

Sat6: If ∆ is an F -saturated set in H then

vii) If ¬A∈∆ then A /∈∆.

We will be using the following metalinguistic conventions:

F : for the set of formulas of this language;
→An: for a formula of the form A1→ (A2→ . . . (An−1→ An) . . . );
→An : for→ An, to indicate that An has not the form A→ A′.
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Semivaluations

An implicative semivaluation s (I-semivaluation, or semivaluation for I) is a function
from F into {0, 1} such that, for every A, B of F , the following conditions hold:

S0→: s(A→ B) = 0⇒ s(B) = 0;
S1→: s(A→ B) = 1⇒ s(A) = 0 or s(B) = 1.

A positive semivaluation s (P-semivaluation, or semivaluation for P) is an im-
plicative semivaluation such that, for every A, B ofF , the following conditions hold:

S&: s(A& B) = 1⇔ s(A) = 1 and s(B) = 1;
S∨: s(A∨ B) = 1⇔ s(A) = 1 or s(B) = 1.

A minimal semivaluation s (M-semivaluation, or semivaluation for M) is a posi-
tive semivaluation such that, for every A, B of F , the following condition holds:

SM¬: s(¬A) = s(A) = 1⇒ s(¬B) = 1.

An intuionistic semivaluation s (H-semivaluation, or semivaluation for H) is a
positive semivaluation such that, for every A, B of F , the following condition holds:

SH¬ : s(¬A) = 1⇒ s(A) = 0.

Lemma 1. It is never the case that

a) For every I-semivaluation s,

1.1: s(A) = 1 and s(B→ A) = 0;
1.2: s(A→ B) = 1, s(A→ (B→ C)) = 1, s(A) = 1 and s(B) = 0;
1.3: s(A) = s(A→ B) = 1 and s(B) = 0;

b) For every P-semivaluation s,

1.4: s(A& B) = 1 and s(A) = 0;
1.5: s(A& B) = 1 and s(B) = 0;
1.6: s(A) = 1, s(B) = 1 and s(A& B) = 0;
1.7: s(A) = 1 and s(A∨ B) = 0;
1.8: s(B) = 1 and s(A∨ B) = 0;
1.9: s(A→ C) = s(B→ C) = s(A∨ B) = 1 and s(C) = 0;

c) For every M-semivaluation s,

1.10: s(¬A) = s(A) = 1 and s(¬B) = 0.

Proof. Follows immediately from the definitions of I-, P- and M-semivaluations.

Lemma 2. If s is an H-semivaluation and s(¬A) = s(A) = 1 then s(¬B) = 0.
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Proof. A positive valuation which satisfies SH¬ also satisfies (vacuously) SM¬.

Corollary 1. Every H-semivaluation is an M-semivaluation.

Corollary 2. For every M-semivaluation s it is not the case that s(A→ B) = s(A→
¬B) = s(A) = 1 and s(¬A) = 0.

Proof. If s(A→ B) = s(A→ ¬B) = s(A) = 1, then s(B) = s(¬B) = 1; so, by SM¬,
s(¬A) = 1.

Valuations

A valuation v — for I, P, M or H — is a semivaluation — for I, P, M or H — for which
the condition V→, below, holds:

V→: for every formula of the form→An , if v(→An ) = 0, then there is a semivalu-
ation s — for I, P, M or H, respectively — such that for every i < n, s(Ai) = 1
and
i) s(An) = 0; and ii) if for some B, An is ¬B, then s(B) = 1.

We may use “I-valuation” , “P-valuation” ,“M-valuation” and “H-valuation” to
mean valuations for I, for P, for M and for H, respectively.

Lemma 3.

i) Every P-valuation is an I-valuation;
ii) every M-valuation is a P-valuation;

iii) every H-valuation is an M-valuation.

Proof. Follows from the corresponding definitions, using, for iii), the Corollary of
Lemma 2.

Lemma 4. For every valuation v (for I, P, M or for H) and for any formula of the form
→An , if v(→An ) = 0, then there is a semivaluation s (for I, P, M or H, respectively),
such that, for every m≤ n, and for every i < m, s(Ai) = 1 and s(Am) = 0.

Proof. By a simple induction using conditions S1→ and V→.

Corollary 1. For every I-valuation v, and for every formula A which is an instance of
postulates P1, P2, v(A) = 1.

Proof. Follows from lemma1 (1.1–1.2) together with lemma 4.

Corollary 2. For every P-valuation v, and for every formula A which is an instance of
postulates P1, P2, P4–P9, v(A) = 1.
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Proof. Follows from lemma1 (1.1–1.9) together with lemma 4.

Corollary 3. For every M-valuation v and for every formula A which is an instance of
postulate P1, P2, P4-P10, v(A) = 1.

Proof. Follows from lemma1 (1.1–1.10) together with lemma 4.

Corollary 4. For every H-valuation v and for every formula A which is an instance of
postulate P1, P2, P4–P10, v(A) = 1.

Proof. Follows from lemma1 (1.1–1.10), Corollary 2 of Lemma 2, and lemma 4.

Corollary 5. For every H-valuation v and for every formula A which is an instance of
postulate P11, v(A) = 1.

Proof. Follows from condition SH¬ together with lemma 4.

Soundness and Completeness

In the following, we will write Γ �C A to mean “for every valuation v for the calculus
C, if for every B ∈ Γ, v(B) = 1, then v(A) = 1”.

Lemma 5. If C is either I, P, M or H, then if Γ �C A and Γ �C A→ B then Γ �C B

Theorem 1 (Soundness). If C is either I, P, M or H, then if Γ `C A then Γ �C A.

Proof. Follows from corollaries of lemma 4 together with lemma 6.

Lemma 6. Let v be the characteristic function of a set ∆; then,

1) if ∆ is F-saturated (in I, P, M or H), v is an I-semivaluation;
2) if ∆ is F-saturated (in P, M or H), v is a P-semivaluation;
3) if ∆ is F-saturated (in M or H), v is an M-semivaluation;
4) if ∆ is F-saturated (in H), v is an H-semivaluation.

Proof. Use Sat3 i) and ii) to prove 1); use 1), Sat4 iv) and v) to prove 2); use 2) and
Sat5 vi) to prove 3); and use 3 and Sat6 vii) to prove 4).

Lemma 7. Let v be the characteristic function of a set ∆; then,

1) if ∆ is F-saturated (in I, P, M or H), v is an I-valuation;
2) if ∆ is F-saturated (in P, M or H), v is a P-valuation;
3) if ∆ is F-saturated (in M or H), v is an M-valuation;
4) if ∆ is F-saturated (in H), v is an H-valuation.
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Proof. Follows from lemma 7 using Sat3 iii).

Theorem 2 (Completeness). If C is either I, P, M or H, then if Γ �C A then Γ `C A.

Proof. If Γ 0C A then there is an A-saturated∆ in C such that Γ⊆∆; so the valuation
for C which is the characteristic function of ∆ gives the value 1 to every formula of
Γ and 0 to A; hence, Γ 2C A.

Valuation Tables

Valuation tables may be constructed to decide the calculi I, P, M and H.
Before defining this kind of construction, let us introduce some auxiliary con-

cepts.
A Σ-sequence is a finite sequence of formulas F1, . . . , Fn such that, for 1 ≤ i ≤ n,

if F ′ is a subformula of Fi , then there is a k ≤ i such that F ′ = Fk.
A valuations table for a given Σ-sequence is construction containing a head line

and a certain number of valued lines obtained by some given rules. The head line
specify the three main vertical parts of each valued line l, which consists of:

1) σl — the justification sequence of sets of the valued line l;
2) l — the number of the valued line;
3) δl — the values sequence of the valued line, corresponding to the formulas of

the Σ-sequence — so, to each formula of the Σ-sequence, a value is associated
in that line.

An I-, P-, M- and H-valuations table T[F1, . . . , Fn] may now be defined by induc-
tion on the length n of the Σ-sequence, as follows:

n= 1 : An I-, P-, M- or H-valuations table T[F1] will have two valued lines, with
numbers 1 and 2, each with a void set as first term of the justification sequence.
F1 receives the value 1 in line 1 and the value 0 in line 2.

n> 1: suppose that T[F1, . . . , Fn−1] is constructed with q lines; we will write l ­ l ′

to mean that for 1≤ i < n if the ith term of δl is 1 then the ith term of δl ′ is 1.

If Fn is atomic or an implication, obtain the I-, P-, M- or H-valuations table
T[F1, . . . , Fn] by extending T[F1, . . . , Fn−1] as follows:

• if Fn is atomic, T[F1, . . . , Fn] will have q new lines with numbers q+1 to q+ q
and such that: for 1 ≤ l ≤ q, the nth term of σl is the void set and, σq+l = σl ;
the initial segment till n−1 of δq+l is the same as in δl ; the nthvalue of δl is 1
and of δq+l is 0.

• if Fn is (Fk→ Fm) then T[F1, . . . , Fn] is obtained in 4 steps:

Principia 14(1): 125–33 (2010).



Valuation Semantics for Intuitionistic Propositional Calculus and Some of its Subcalculi 131

a) first, in each line l ≤ q where the kth value of δl is 1 and the mth value of
δl is 0, we take 0 as the nth value of δl ; and we take the void set as the
nth term of σl ; these lines will be called the a-lines of the nth step;

b) second, for each l ≤ q, if there is no a-line l ′ such that l ­ l ′, we take 1
for the nth value of δl ; and we take the void set as the nth term of σl ;
these lines will be called the b-lines of the nth step;

c) third, for each l ≤ q, in the usual order, if there is a term of σl whose
elements are all a-lines or lines where the nth value of δl was previously
obtained by this c) rule, we take 0 as the nth value of δl ; and we take the
void set as the nth term of σl ; these lines will be called the c-lines of the
nth step;

d) finally, suppose that there are still lines not yet finished and that D is the
set of those lines; then if l is the jth line in D, in the usual order, construct
a new line, with number q + j, as a copy of the part of l constructed at
the n− 1th step; then take 1 as the nth value of δl and 0 as the nth value
of δq+ j; take the void set as the nth term of σl and eliminate from the
previous terms of σl all the numbers of a-lines and c-lines of the nth step;
finally add to σq+ j its nth term of σq+ j which will be the set {l ′ ≤ q : l ′

is an a-line or a c-line such that q + j ­ l ′}. Call l a d1-line and q + j a
d0-line of the nth step.

If Fn is (Fk & Fm) or (Fk ∨ Fm), to get the P-, M- and H-valuations table T[F1, . . . ,
Fn], just complete every line l, by extending δl in the classical way and adding the
void set is the nth term of σl .

If Fn is ¬Fk, the M- and H-valuations table T[F1, . . . , Fn] is obtained by these
steps:

i) if we are dealing with M-valuations then:

• if, for every m < n there is no i such that Fm = ¬Fi , then, for every line l,
construct a new line l ′ with the initial segment till n− 1 of l; the nth value of
δl , will be 1 for l and 0 for l ′; the void set is added to both σl and σl ′; call a
line M-typical if Fn and Fk have both the same value 1;

• else, for every l ≤ q,

a) if l is not a typical line, then the nth value of δl , will be 0 if the kthvalue
is 1 and the void set is added to σl ; l is called an a-line for the nth step;

b) if l is a typical M-line (Fm and Fi have both value 1), take 1 as the value
of Fn; add the void set as a new term of the justification sequence.

We have now to treat the lines l where the kth term of δl has the value 0; then
we proceed exactly as in cases c) and d) when Fn is an implication.
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ii) if it is an H-valuations table, then :

a) the nth value of δl , will be 0 if the kthvalue is 1 and the void set is added
to σl ; these lines are called the a-lines for the nth step;

b) void case in H (we maintain the letter “b” only to help comparisons)
c) and d) — like c) and d) in M-valuations tables.

By methods similar to those presented in Loparić 1986, two lemmas can be
proved:

Lemma 8. For every value line l in every I-, P-, M- or H-valuation table T[F1, . . . , Fn],
there is a valuation v (for I, P, M or H, respectively) which gives to Fi the value of the
ith term of δl , for 1≤ i ≤ n (that means, v “agree” with l in the values associated with
the formulas F1, . . . , Fn).

Lemma 9. For every valuation v for I, P, M or H, if T[F1, . . . , Fn] is an I-, P-, M-
or H-valuation table T[F1, . . . , Fn], respectively, there is a line l such that for every i,
1 ≤ i ≤ n, the the ith term of δl is the value that v gives to Fi (that means, l “agree”
with v in the values associated with the formulas F1, . . . , Fn).

Theorem 3. The I-, P-, M- and H-valuation tables are decision methods for the calculi
I, P, M and H, respectively.

The URL http://www.paralogics.net/tableaux/minimal_intuitionism/ is
a page containing a form where, when a visitor enters a formula and chooses a
calculus (M or H), a script returns a corresponding valuation table for a sequence
having, as its terms, this formula and all its subformulas.
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Resumo. Apresentamos neste trabalho semânticas de valorações para o Cálculo Proposicio-
nal Intuicionista (também conhecido como Cálculo Proposicional de Heyting) e três de seus
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importantes subcálculos: os cálculos proposicionais Implicativo, Positivo e Minimal (também
chamado Cálculo de Kolmogoroff ou de Johansson). Provamos a correção e a completude
dessas valorações com respeito aos respectivos cálculos e, em seguida, apresentamos algo-
ritmos de geração das tabelas dessas valorações, algoritmos que se constituem, assim, em
métodos alternativos de decisão para os esses cálculos.

Palavras-chave: Intuicionismo, cálculo minimal, semântica de valorações, tabelas de valo-
rações.
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