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Abstract. Several logical puzzles, riddles and problems are defined based on the notion of
games in informative contexts. Hintikka argues that epistemology or the theory of knowledge
must be considered from the notion of information. So, knowledge cannot just be based on
the notions of belief and justification. The present proposal will focus on the logical structure
of information, and not only on the quantification of information as suggested by Claude
A. Shannon (1916-2001) (Shannon 1948). In many cases, the information bits, although
seemingly or factually contradictory, are quite relevant. The paraconsistent systems of logic
offer a formalization of reasoning that can support certain contradictions. The well-known
“Bar-Hillel–Carnap Paradox” (Bar-Hillel, 1964) causes embarrassment when it concludes that
the informational content of a contradiction would be maximum, opposing the traditional
notion that the semantic information must be true, and that contradictions are necessarily
false.
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1. The theory of semantic information

The quantification of information proposed by Shannon is supported by terms of
probability. In similar terms, the semantic approach of information theory requires
a purely logical notion of probability. The semantic information is given by an in-
verse relationship between probability and information (see formula 8 below). This
approach was initially defended by Carnap and Bar-Hillel (1964) (first published
in 1953). Later, Kemeny (1953), Smokler (1966), Hintikka and Suppes (Hintikka,
1970) contributed to the development of the initial proposal. Dretske (1981) com-
plemented the basis of the semantic information theory.1

Some researchers consider the measure of information an important branch of
research of information theory. Another relevant topic of this theory is the relation-
ship between information and knowledge. From this point of view, we can consider a
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way to address epistemological questions in the light of information theory. So, here
is an epistemology based on the concept of information.

In everyday speech we say we have received information, when we know
something that we did not know before: when “what we know” has changed.
If then we were able to measure “what we know”, we could talk meaningfully
about the amount of information we have received, in terms of the measur-
able change it has caused. This would be invaluable in assessing and com-
paring the efficiency of methods of gaining or communicating information.
Information Theory is concerned with this problem of measuring. (Mackay
1950, p.9)

With the development of research in information theory in the mid-twentieth
century, it became possible to quantify information from probability calculus (cf.
Shannon and Weaver, 1974, Mathematical Theory of Communication). Jaakko Hin-
tikka, inspired by the work of Yehoshua Bar-Hillel and Rudolf Carnap, proposed an
extension of the theory of semantic information related to the underlying logic of
informational scenarios and its descriptions (Hintikka, 1970).

According to Floridi (2013) certain philosophical theories about semantic infor-
mation aim to connect this concept to other forms of complex phenomena, such as
epistemic, mental, doxastic, etc. A theory of semantic information from the point of
view of its factual content or structure was worked by Dretske (1981) and by Bar-
wise and Seligman (1997). This approach was also known as the naturalization of
information.

Formally, both the statistical information theory and the semantic information
theory have elements in common. These theories are defined, or may be defined, in
terms of an appropriate concept of probability.

The connection made between information and probability is the same for the
two cases:

(1) inf(h) = log2 p(h)

where in f (h) is the measure of information about an event h, and p are the proba-
bility measure in question. From equation (1), one can obtain the known expression
of entropy:

(2) −
∑

i

pi log pi

This formula is applied in cases where there is a number of exclusive alternatives
with probability pi , such that i = 1, 2,3, . . .. Carnap, in (1993), Logical Foundation
of Probability, pp.29–36, introduces two concepts of probability: probability1 and
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probability2. This distinction between such concepts refers to a possible contrast be-
tween statistical information theory and semantic information theory. This difference
can be explained through the following terms: in agreement with statistical informa-
tion theory, probability should be interpreted in terms of frequencies of occurrence of
events; on the other hand, according to the semantic information theory, we assume
a logic formulation of probability.

2. The Bar-Hillel–Carnap Paradox and the Scandal of
Deduction

It is usual to qualify a deductive inference as being analytical. In informational terms
this characteristic can be formulated as follows: the information contained in the con-
clusion is a subset of the information contained in the premises, i.e., the information
contained in the conclusion is already contained in the premises. In terms of truth
functions, i.e., functions from a set of truth values to truth values, it is common to
repeat the claim that the conclusion of a valid deduction keeps the true value con-
tained in the premises, or that the set of possible worlds that verifies the set (or the
conjunction) of all premises is a subset of the set of possible worlds that verifies the
conclusion. The reconciliation between the two views can be done via the semantic
perspective of information theory.

The Inverse Relationship Principle states that the concepts of information and
unpredictability are similar. More precisely, there is an inverse relationship between
the probability that a proposition P is shown to be true, and the sum of information
(semantic information) supported by P.

According to D. Agostino and Floridi (2009), any analysis of semantic information
that supports the Inverse Relationship Principle touches on two major difficulties: the
Bar-Hillel–Carnap Paradox and the Scandal of Deduction.

The Inverse Relationship Principle maintains that the less probable or possible a
proposition is, the greater the amount of semantic information carried by it. It follows
that the contradiction is a kind of message that contains the greatest amount of se-
mantic information. Many researchers consider this conclusion as being unpalatable
(D. Agostino and Floridi, 2009). Bar-Hillel and Carnap are among the first researchers
to make explicit this result that in the texts of Floridi is called the Bar-Hillel-Carnap
Paradox (cf. Bar-Hillel, 1964).

According to Floridi and D’Agostino (2009), despite being an unfortunate result,
the paradox is an inevitable logical consequence for any quantitative theory of weak
semantic information (called “weak” because the truth values do not have influence
in obtaining this result). There are some attempts to overcome this paradox, consist-
ing of trying to show that Semantic Information Theory is based on a weak semantic
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principle (cf. D. Agostino and Floridi, 2009). So it would be natural to extend this
proposal to the logics that are able to explain some semantic aspects within their own
language, for example, the paraconsistent logics.

Now, if we look at tautologies and consider their probabilistic values, we see
that their information content is zero. As deductions always need a finite number of
premises, each deduction can also be seen as a tautological conditional statement
where the conjunction of all the premises is the antecedent and the conclusion the
consequent. Once all tautologies have probability 1 (that is, are true in all possible
worlds) and have null informative content (by the Inverse Relationship Principle),
then all deductions have zero information content.

The following question, based on the above argument, leads us to what Hintikka
has called the Scandal of Deduction: in which sense can we say that the valid logical
deductions provide us with new information? Or, in other words, how could we ever
be surprised in front of analytical deductions?

The present paper deals only with the case of the Bar-Hillel–Carnap Paradox. The
treatment of the Scandal of Deduction will be indicated for future work.

3. The generalization of semantic information theory

The most acceptable measure of information deals with selective information. Other
measures are possible, but this measure will suffice for the purposes of this paper. (For
further information measures, see Mackay 1950, The Nomenclature of Information
Theory). One of the questions that allow us to understand the definition of selective
information is this: what degree of difficulty exists in identifying a particular element
of a given set? It is thus natural, for the context for applications, to measure the unit
of information in terms of elements and sets.

In a set C = {n1, n2, n3, . . . , nk}with k elements, the information that determines
a particular element ni will have log2k bits. This is because any element in this set
can be unequivocally encoded by a sequence of symbols ranging in D, where D is a
set with two different digits. Each position of codification should be filled out with
only one digit, di ∈ D. In order to be effective, we will only consider finite sequences
of symbols (or, in other words, finite sets). Another way of explaining the measure
is through a game consisting of two agents, A and B, and playing with the set C =
{n1, n2, n3, . . . , nk}. One of the players (let’s say A) must choose one of the elements
of C , while the other player (B) will have to find out what was the chosen element. For
this, B should ask questions like “Is the chosen element y?”, “Is the chosen element
between x and z?”, “Is the chosen element greater than or equal than w?” and so on,
where x , y , z and w range over the set C . The player A will have to answer “yes”
or “no” according to the case. The best strategy for A is the known binary search
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algorithm. If we determine that the average number of questions needed to find out
the chosen number is a measure of information for this scenario, then the measure of
the difficulty to find the number chosen or drawn can also be determined. The higher
this measure is, the higher the initial uncertainty over the chosen element. Likewise,
we can quantify the “amount” of surprise involved here. The greater the measure
of uncertainty of an element in a set is and the smaller the number of questions
that were actually used is, the more surprise the discovery of the number generates
(cf. Hintikka 1970, On semantic information). This happens because the measure of
surprise depends on the unexpected hit. That is why it is considered more surprising
to hit a number in a million than one in a thousand (both with 3 questions).

“When we receive information, it causes a change in the symbolic picture or rep-
resentation which we would use to depict what we know. It is found the changes in
representations can be measured; so “amount of information”, actually in more than
one sense, can be given numerical meaning. It is as if we had discovered how to talk
quantitatively about size, through discovering its effects on measuring-apparatus.”
(Mackay 1950, p 9).

In Watanabe (1969), Knowing and Guessing: A formal and Quantitative Study, we
find the following definition:

(3) I = DI = ign(ϵ)− ign′(ϵ) = −
∑

i

pi log pi

where I is the quantity of information, which coincides with the amount of decrease
in ignorance DI , and where ign(ϵ) and ign′(ϵ) are, respectively, the quantity of igno-
rance of a proposition before and after the fact of the proposition’s occurrence. This
formula allows us to interpret epistemology from the point of view of information.
Scientific discovery is guided by a theoretical construct that allows one to simulate the
unknown within the known. The constituent information (previously discovered) of
the scenario is reconfigured within the previous structure of information. The quan-
tity of surprise can be understood as the amount of information liberated by such
an event. The mind (or the imagination) has the ability to simulate the behaviors of
these changes and therefore conceive the characteristics of theories or of complex
scenarios consistent with other theories or scenarios. Thus, despite the possibility
confirmed above, there is not still a general theory that manages the structure of
information ignored or quasi-known (or conceivable).

As we have seen, Watanabe (1969), Knowing and Guessing: A formal and Quanti-
tative Study, shows a relationship between the measurement of information and the
quantity of ignorance about an event before its actualization or realization. Depend-
ing on the strategy taken, the amount of information contained in the assertion “the
chosen element is n j” may differ (cf. Edwards, 1964).
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In view of the fact that the concept of information is being treated based upon the
number of questions or answers needed to identify unequivocally one element of a
certain set, we can say that this is an approach related with the viewpoint of erotetic
logic, or the “logic of questions”.

In 1976, the mathematician Stanislaw Ulam proposed a riddle involving a struc-
ture of search as described above. However, among the possible answers, the player
who was answering the questions could lie one, two or more times. The problem
defined by Ulam is to decide how many questions are needed to identify the number
drawn under this new condition. In (Mundici 1990, Two Papers on Ulam’s Logic with
Lies), Mundici shows that an adequate logic to the Ulam’s game is the Łukasiewicz’s
Logic. Similar games can be designed where the base of reasoning is incorporated
with elements from non-classical logics. Some studies may be carried on a gener-
alization of information theory from paraconsistency and the relationship with ele-
ments of the study of probabilities. For example, Walter A. Carnielli in (2009), Uma
lógica da modalidade econômica?, proposes a reformulation of Bayes theorem taking
the paraconsistent logic Cie as the underlying logic.

This paper concentrates on the possibility of applying information theory for an-
alyzing scenarios that were previously outside of its scope. For this, we take the se-
mantic point of view of information theory. Based on classical logic, we try to extract
a logical structure of certain information contexts. One of the primary goals to be
reached when considering the logical basis of an informative context is to identify
the possibility of distinguishing the different alternatives by means of the expressive
sources available, or more simply, through the language in use. The more alterna-
tives a sentence admits, the more probable it will be (in some “purely logical” sense).
Thus, it is reasonable to say that the sentence (P ∨Q) carries more information than
the sentence (P∧Q), even in view of the additional information that both are true. In
this case, there are more possible worlds or interpretations that model (P ∨Q) than
worlds or interpretations that model (P ∧Q).

Based on the idea that puzzles are connected to certain types of games in defined
informative scenarios (or descriptions of states or possible worlds), we define logical-
formal descriptions, that we call scenarios (following Jakko Hintikka, 1970).

In logical terms (i.e., in terms of the classical propositional logic), the different
possible cases (or descriptions of the world) are defined from the idea of constituents
and these have the following form:

(4) (±)P1 ∧ (±)P2 ∧ (±)P3 ∧ . . .∧ (±)Pk

Each symbol (±) may be substituted by ¬ or deleted, thus generating several pos-
sibilities of constituents from the given set of sentences. All constituents have size
k. The difference between the constituents is determined by the different ways in
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which the negation is distributed between sentences. Therefore, the total number of
constituents will be 2k.

Each description that admits one of the alternatives described by constituents
excludes the others. It will be true if any of the alternatives allowed are true and false
otherwise. Each description can be represented as a disjunction of some (possibly all)
constituents, provided that at least one of these is admitted. As a formal example, let
us take the following description:

(5) h= C1 ∨ C2 ∨ C3 ∨ . . .∨ Cw(h)

In this case, h is the description, and its scope is w(h). When h is inconsistent,
w(h) = 0. In light of these definitions, it is very simple to identify the logical concept
of probability linked to appropriate measures of information. Obviously, the con-
stituents are the representatives of different atomic symmetrical events that are taken
as the basis for this measure of information. A description h is more probable or has
more chances to match the facts as more alternatives represented by constituents it
admits or, in other words, the higher w(h) is. Thus, it is presumed that the measure
of probability in the logical sense can be defined as follows:

(6) p(h) =
w(h)
2k

Obviously, this is a probability of a finite set. From (1) and (6) it is possible to
obtain the following measure of information:

(7) inf(h) = − log p(h) = − log
�

w(h)
2k

�

= k− log w(h)

In this formula, it is assumed that the base of the logarithm is 2. It is easy to
see that − log p(h) = − log

�

w(h)
2k

�

, once p(h) = w(h)
2k by (7). Hence, by definition one

arrives at k−log w(h).2 Such an equation also provides a very intuitive idea about the
concept of information: the more accurate or timely a sentence, the more informative
it is. Thus, the more alternatives a statement excludes, the more informative it is (This
idea has been emphasized in particular by Karl Popper).

In the case of an inconsistent description, w(h) = 0. Since the logarithm of 0 is
not defined, the value of in f (h) will be considered from the limit of the function,
namely limx→0(log2 x) = −∞. This interpretation is reasonable, since the inconsis-
tency is related to the maximum limit of “understandable” information contained in
a description.

Therefore, a further and interesting way to look at the measure of information is
through excluded alternatives by the description. This notion is defined as the content
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of a description or cont(h):

(8) cont(h) =
2k −w(h)

2k
=

2k

2k
−

w(h)
2k
= 1− p(h)

The result 1− p(h) is obtained by definition of p(h) in 6, and cont(h) can be seen
as a measure of information that a given number of alternatives excludes. We can
also think of cont(h) as being the probability of the excluded events. 2k is the total
number of different constituent, so 2k−w(h) is the number of excluded alternatives.

Let 1− p(w(h)) be the probability of excluded alternatives:

(9) 1− p(w(h)) =
2k −w(h)

2k

It is noticed immediately that there is a relationship between this definition and
the primary definition of information. In fact, this is a perfectly reasonable measure
of information conveyed by h. Conversely, one can define in f (h) based on cont(h)
as follows:

(10) inf(h) = log
�

1
1− cont(h)

�

The previous relationship between the two measures is quite interesting. It is of-
ten argued that the point of view of the logical structure of the information herein
sometimes is based on the first definition, sometimes on another one. It is thus sug-
gested that cont(h) can be regarded as the substantial information measurement
conducted by a description; inf(h) is regarded as a measure of surprise, that is, it
measures how unexpected its truth is (cf. Hintikka, 1970).

Some insights about the difference between the functions cont and inf may be
given by the results below:

(11) cont(h∧ g) = cont(h) + cont(g)

if and only if (h∨ g) is logically true;

(12) inf(h∧ g) = inf(h) + inf(g)

if and only if h and g are independent with respect to the measure of probability p
defined by 6;

(13) inf(h) = cont(h) = 0

if and only if h is logically true.
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The above equations provide the framework for a logical theory of (semantic) in-
formation based on classical propositional logic, because they define concepts such as
probability, surprise and information from scenarios built only with atomic sentences
and logical connectives (conjunction, disjunction and negation). This was presented
in Hintikka (1970) based on the work of Rudolf Carnap where there are extensions
of this case to monadic first order logic.

In this context, both the Scandal of Deduction and the Bar-Hillel–Carnap Paradox
holds. The measure of semantic information of an inconsistent description tends to
infinity and of the tautological descriptions are 0.

Taking into account that these scenarios can be used in the formal description of
puzzles or riddles, we generalize the above cases based on some non-classical logics.
At first, the generalization will be proposed for the case of paraconsistent logic LFI1.

4. Information theory approach under a paraconsistent view

In the context of formal symbolic languages, it is said that a deductive theory is con-
sistent if it has no contradictory theorems; otherwise the theory is called inconsistent.

Following the notation and constructions contained in Carnielli, Coniglio and
Marcos (2007), Logics of Formal Inconsistency, a theory Γ is contradictory if satisfies:

(14) ∃α(Γ ⊩ α and Γ ⊩ ¬α)

It is know that there are important kinds of reasoning that makes use of contradic-
tory information in the same scenario, but without trivializing the underlying deduc-
tive system. Theories that support some contradiction without trivializing the system
are called “non-explosives”. Several puzzles can be characterized from this property,
i.e., their solutions are achieved based on the use of reasoning about a set involving
contradictory information, albeit the correct solution is not trivial and in many cases
should be considered objectively. In science, philosophy, physics and even mathemat-
ics, there are some theories that contradict others or which are partly contradictory.
In many of these cases the contradiction is shown as a relevant information source
since it does not trivialize the systems. Therefore, the main objective in studying such
cases is not to remove contradictions or conflicting theories, but to adapt ourselves
to these reasoning scenarios in order to obtain more effective research methods.

Several researchers in logic have developed important works on paraconsistency.
Among these works we can cite Logics of Formal Inconsistency, published in volume
14 of the Handbook of Philosophical Logic, edited by Dov Gabbay and Franz Guen-
thner (Carnielli, Coniglio and Marcos, 2007). The Logics of Formal Inconsistency are
systems in which the C-Systems can be interpreted as a subclass (henceforth LFIs),
namely: they are systems in which consistency can be expressed by a unary operator.
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Classical theories are characterized as explosives in the broadest sense of the term.
The LFIs, by internalizing the notions of consistency and inconsistency at the level of
object language, allow graduations of non-explosives contradictions in the theories of
their systems. With this, it becomes possible to treat paraconsistent reasoning in var-
ious degrees. Then, the paraconsistency can be defined as the study of contradictory
and non-trivial theories.

Clearly, the concept of paraconsistency is related to the properties of negation
within a given logic. The works of Arnon Avron (2002) On negation, completeness
and consistency, Jean-Yves Béziau (1994) Theórie legislative de la negation pure and
Wolfrang Lenzen (1998), Necessary conditions for negation-operators (with particular
applications to paraconsistent negation) deal with the role negation in paraconsis-
tent logics and João Marcos (2004), Nearly every normal modal logic is paranormal
presents a summary of the ideas contained in the preceding articles.

A first approximation between paraconsistency and informative scenarios as de-
scribed above is made with the logic LFI1, also known as J3 or CLuNs (cf. Carnielli,
Marcos, and Amo 2000, Formal inconsistency and evolutionary databases).

In the present case, inconsistency and contradiction may be taken as identical.
The symbol • characterizes a contraditory information A as follows: if A is a contradi-
tory information, then holds •A. A contradictory information may also be presented
as A∧¬A. Therefore, it holds for the equivalence •A↔ A∧¬A.

Informational contradictory scenarios are informative scenarios that for some
sentence P ∈ Cenc, where Cenc is the set of constituents of the scenario, •P holds.
This generalization of information theory is the result of information theory about
informational contradictory scenarios (or ICS). If the logic underlying these scenar-
ios has the paraconsistent characteristic of being non-explosive, then such scenarios
will be called suitable informational contradictory scenarios (or SICS).

We present below the formal definition of a paraconsistent constituent. Accord-
ingly, descriptions of the world (in terms of possible worlds) are analyzed in a gen-
eralized theory of SICS, taking into account contradictory constituents:

(15) (
•
±)P1 ∧ (

•
±)P2 ∧ (

•
±)P3 ∧ . . .∧ (

•
±)Pk.

The symbols
•
±must be replaced by a single symbol contained in the following set,

S = {•,¬}, or completely erased according to the case to be described. The symbol
•P, in the reading of the logics of formal inconsistency, means that P is inconsistent.
In particular we will be dealing with the three-valued paraconsistent logic LFI1 (see
Carnielli, Marcos, and Amo, 2000). In this case •P holds iff P (and ¬P) is partially
true. The case •Pi , i ∈ {1,2, . . . , k}, then, admits simultaneously the cases Pi and
¬Pi .

There are thus three possibilities for each P ∈ Cenc, namely: P holds, •P holds
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or ¬P holds. The total number of constituents is 3k. The descriptions, unlike the
classical case, admit intersections of cases, i.e., some descriptions may overlap. The
descriptions, however, are partially exclusive. This happens because the paraconsis-
tency occurs in cases that there is conflicting information without trivialization. The
constituents with contradictory information may be partially the same as information
present in constituents that have no contradictions. Likewise, each description may
be represented as a disjunction of some (possibly all) the constituents, provided that
they admit at least one of these:

(16) hPar = C Par
1 ∨ C Par

2 , . . . , C Par
w(hPar )

where hPar is the sentence that describes the scenarios (possibly paraconsistent) and
w(hPar) its range. Now, if hPar is contradictory (all constituents have contradictory
descriptions •Pi), then we do not necessarily have the equation w(hPar) = 0. The
idea in this fact is that a contradictory description is more informative than the ab-
sence of description. It is possible in this context to extend the definitions of the key
concepts of the theory of logical or semantic information to non-classical (paracon-
sistent) cases. The logical concept of probability can thus be set up to paraconsistent
contexts as follows:

(17) p(hPar) =
w(hPar)

3k

When it is established that •Pi , i ∈ 1, 2, . . . appears in a description, it is con-
cluded that the information contained in the proposition cannot be sustained in a
non-contradictory way. Thus, the description requires a local revision if the contra-
dictory information is relevant, otherwise only the other items of description will be
taken into account.

From the classic definition of information one obtains the appropriate measure-
ment of information based on the paraconsistent logic probability (LFI1) with the
following expression:

(18) inf(hPar) = − log2 p(hPar) = − log2

�

w(hPar)
3k

�

= k log2 3− log2 w(hPar)

The measure contPar(hPar) is identical to the propositional classic case if in the
description there does not appear any sentences of the form •Pi . In general, has the
following form:

(19) contPar(hPar) =
3k −w(hPar)

3k
=

3k

3k
−

w(hPar)
3k

= 1− p(hPar)

Given the above definitions of the elements of information theory to the case of
an underlying paraconsistent logic, it is possible to define the relationship between
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inconsistent sentences and a description of the sets K j of the elements known by j.
When •Pi is found, one can conclude that Pi ∈ K j and ¬Pi ∈ K j , where K j is the set
of propositions known by j. However, it is reasonable to conclude that when Pi and
¬Pi is found, the conclusion is •Pi ∈ K j .

Semantic information is measured by taking up a logical scenario model of knowl-
edge. Thus, the amount of information is a measure of the “impact” of the sentences
on the known scenario. However, the intermediate stages (in which the information
received is being added to the scenario) could sustain possible contradictions. From
this one cannot derive a trivialization of the set of sentences known by an agent.
Therefore, the treatment of these intermediate states is conveniently done through
paraconsistent logical systems. As was shown above, this treatment provides a new
measure of information for scenarios with contradictory sentences. We also show that
this new way to measure information (from contradictory scenarios in the system
LFI1) is an alternative to the Bar-Hillel–Carnap Paradox. According to the results,
if the logic of the scenario is replaced by paraconsistent logic, then the amount of
information in a contradictory scenario is not infinite, and therefore the theoretical
framework of the theory of semantic information guarantees that such a measure is
computable. In this way, the so-called Bar-Hillel–Carnap Paradox vanishes.

The case of the Scandal of Deduction was not considered here. However, since
the substitution of the basic logic was fundamental for the dissolution of the case of
the paradox, it is convenient to affirm that the treatment of the case of the Scandal
of Deduction could be done using a basic intuitionist logic. In this case, one has the
possibility of treating tautological cases in a more constructive way. So, the case of
the Scandal of Deduction will be considered in future works.
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Walter Carnielli, who accompanied the development of the research presented here and con-
tributed with technical review and comments.
2 The logarithm of a fraction is the difference of the logarithm of its terms.
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