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Abstract. The problem of understanding how statistical inference is, and can be, applied in
empirical sciences is important for the methodology of science. It is the objective of this paper
to gain a better understanding of the role of statistical methods in scientific modeling. The
important question of whether the applicability reduces to the representational properties
of statistical models is discussed. It will be shown that while the answer to this question
is positive, representation in statistical models is not purely structural. In spite of the fact
that representation in statistical models is based on the structural similarities between the
statistical model and the empirical systems under study, these relationships are shown to be
appropriate for representing relations in the target system by agent function, too. A second
aspect of the paper involves the claim that agent-based components of statistical modeling
are: a) interpretation of random variables, b) selection of the goal of statistical research, and
c) selection of estimator properties. To justify these claims, a preliminary discussion will be
presented on the role of statistics in modeling, as in regression and other structural models.
This role will be explored and realized using a structural viewpoint. Also the role of statistical
estimation in statistical modeling is discussed to explain the representational role of models
and the inferential role of the agent in modeling.
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1. Introduction

Nowadays, statistical inference has an undeniable role in scientific activities. Statisti-
cians and researchers, who employ statistical methods, are, intuitively, aware of the
fact that statistics is applicable to scientific modeling. The question then arises, is
how this applicability can be explained? (Freedman, 1995). A well-known approach
to answering this question is to note that scientific models are applicable, because
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they have a representational role (Brown, 1997; Batterman, 2010). We would like
to explore this role of statistics in scientific modeling, because “representation” is an
important feature of a “model”. Representation is a concept that has been considered
in various philosophical areas over the last few decades. The prospect of philoso-
phers who use the concept of “scientific representation” is that they can explain the
function of scientific theories and models. A theory of representation constitutes the
necessary and sufficient conditions for scientific research (for example, see Suppes,
2002, pp. 51-80).1

Recent works on the nature of scientific representation have unraveled a con-
flict between the following two points of view: 1) informational views which focus
on the objective relations between representations (theories, models, simulations,
diagrams, etc.) and the target systems, as necessary and sufficient conditions, and
2) functional views which draw upon cognitive activities and the roles, such as in-
terpretation2 and inference,3 played by the agent4 in connection with these target
systems (e.g. Chakravartty, 2010). In the structural viewpoint, the objective relations
could be isomorphism,5 partial isomorphism,6 and homomorphism.7

Models have a pivotal role in many scientific contexts. Statistics has been fre-
quently used in scientific modeling. The main function served by each model has,
however, been one of representation. Such models are, typically, some simple repre-
sentation or description of the entity or system being studied. This paper deals with
the following two main areas:

1. Structural relations between statistical models and their target systems; and

2. The role of the agent in the representation by statistical models.

Initially, in Section 2, we consider structural accounts as the philosophical con-
text and the conceptual toolbox to reconstruct statistical models. Implicit, to a purely
structural account, is the assumption that the representational role of a statistical
model is primitive and exhaustive, and that its other roles are reduced only to its rep-
resentational properties. In Section 3, we explore the representational role of models
to show that a purely structural account fails to explain the role of statistics in mod-
eling. Rather, it is shown that statistics has an extrinsic role in the representation of
scientific models. In Section 4, we discuss the inferential role of the agent in estimat-
ing model parameters. Section 5 introduces a hybrid account of the “representation
of statistical models” from 1) necessary (Section 2) however insufficient (Section 3)
structural relations between statistical models and target systems and 2) agent-based
components of representation (Section 4). Finally, Section 6 provides some conclu-
sions and remarks.
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2. Structural reconstruction of the applicability of statistics

In this section, we explore the question of whether the applicability of statistics will
reduce to the representational properties of statistical models. In representational
theories, two aspects must be considered: 1) the structural relations between the
model and the target system, and 2) the agent-based components. For this purpose,
we will reconstruct statistical models from a structural perspective (Section 2.2) in
an attempt to explicate the elements of the models and the target systems and their
components. To do this, first, we will review the structural literature in the philosophy
of mathematics (Section 2.1).

2.1. Structuralism in the philosophy of mathematics

The literature on structuralism has centered on a variety of questions and problems.
The main question in mathematical structuralism is ontological about mathematical
objects; however in this paper, we focus on the structural answer to the question of ap-
plicability.8 In this regard, two types of applicability need to be distinguished: 1) the
applicability of sciences in general, and 2) the applicability of a specific discipline to
other sciences. Mathematics and statistics exemplify the second type, but they play
different roles in sciences and are applicable in varied ways. Many questions may be
raised about the application of statistics that have been neglected by philosophers.
However, studies have been reported on the applicability of mathematics, which we
can exploit as useful to our present concerns.

In the philosophy of mathematics, different ideas have been put forth about math-
ematical entities and their semantics, and a number of structural accounts have been
presented to explain the applicability and utility of mathematics. The ‘structuralist
view’ of mathematical objects, in reference to mathematical objects, is always in the
context of some background structure, and that the objects have no more to them
than can be expressed in terms of the “basic relations of the structure” (Parsons,
1990, p. 303); i.e., from the metaphysical point of view, the mathematical objects do
not have an intrinsic nature, or the structure requires a whole of mathematical ob-
jects together. Structuralists believe that “mathematics is a rich source of structures”,
and some mathematical structures are either designed to, or otherwise found to, ac-
curately capture the important structural relations of an empirical set-up (Bueno and
Colyvan, 2011, p. 346).

The structural view of applicability maintains that there exist certain structure-
preserving mappings between the world and the mathematical structure in ques-
tion (Pincock, 2007), and that mathematical structures represent the physical set-up.
Structural accounts explain the utility of mathematics in some applied situations by
demonstrating the existence of the right kind of “map” from a mathematical structure
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to some appropriate physical set-up. In other words, the applicability of mathematics
is accounted for by appreciating the relevant structural similarities, e.g. isomorphism
or homomorphism, between the empirical system under study, and the mathematics
used in the investigation of that system.

Based on this view, the usefulness of mathematics is much like that of a city street
“map”; so that, such view is called the “mapping” account. This account is based on
the implicit assumption that mathematics is no more than a convenient representa-
tional system.9 The mapping account and the purely structural view are instantia-
tions of informational accounts of representation. Informational views focus on the
necessary and sufficient objective relations between mathematics and the physical
set-up that is mapping function, in a purely structural view. But in functional view,
representation and applicability are constituted by some cognitive functions.

2.2. Structural reconstructing on statistical models

In this section, we try to reconstruct the statistical models in a structural view, so we
can examine the claim that statistical models have a structural similarity to a physical
set-up. A structure is usually taken to be a set of objects and a set of relations on
these. Let T be the empirical situation to be represented (or a “target system”), and
M be the structure to be used in a model of T. According to the structural view, M
and T are set-theoretic structures;10 M = 〈A, R〉 and T = 〈A′, L〉, where A is a set of
model elements, and R is the relation between these elements. A′ is a set of target
system elements, and L is the relation between the target system elements. Such an
account, then, states that a model M represents a target system T if there is a function
f : A→ A′ that establishes the following relations between R and L:11

ai ∈ A, a j ∈ A, a′i ∈ A′, a′j ∈ A′, and f (ai) = a′i and f (a j) = a′j ,

then L( f (ai), f (a j))↔ R(ai , a j)

To explain how we can use the structural view to reconstruct statistical models,
we focus on a main class of statistical models called structural models (SMs). SMs
consist of two sets of variables: U and V , and a set of functions, F , that determine,
or simulate, how values are assigned to each variable vi ∈ V . Thus, for example,
the equation vi = fi(v, u) describes a physical process by which the variable vi is
assigned as the response to the current values, v and u, of all the variables in V and
U . Formally, the triplet 〈U , V, F〉 defines an SM (for more details, Pearl (2014) may
be consulted). Several statistical models/methods, such as regression models, factor
analyses, path analyses, variance analyses, and structural equations models (SEM),
are instances of F in the SM triplet. In this language, A= {ui , vi} and R= { fi}.
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Consider for instance, M = 〈A, R〉 as a simple linear regression model, in which
A = {Y, X } and R : Y = β0 + β1X + ε is determined by the structural coefficients
{β0,β1,ε}.12 In the real world, there is a structure W = 〈T, L〉, in which T = {t1, t2}
with the actual relation L between t1 and t2 which we expect to be represented by
the model M. According to the structural account, there exists a structural relation
f between R and L expressed by R(Y, X ) ↔ L( f (t1), f (t2)). In such a structural
view, the mapping is defined to hold between the statistical equations and the struc-
tural relations under study. The question arises at this point is, whether there exist
any mapping between such statistical equations and structural relations under study.
Accepting that the statistical equations are determined by the estimation of the pa-
rameters, we then need to answer the question about what the interpretation of the
parameters would be. We will revisit this question in Section 4.

3. Structural mapping and underdetermination13 of
statistical models

Let us assume that any statistical model, as a system of equations, represents a target
system. But what is the role of the statistical model in the representation itself? We
may entertain two positive answers. The first is a strong answer, which asserts that
the statistical model lies in the content of the representation; which may be called
an ‘intrinsic role.’14 In other words, the statistical inference enhances the content
of the representation so that the statistical model, as an equation, represents a real
relationship in the subject under study, and that the parameters of the equation have
a real interpretation. The second one is a weak answer, which maintains that the
statistical elements have the role of evaluating the representations of the assumptions
and the conceptual model. In this section, we will explore these two answers.

As already explained in the previous section, in the statistical model M= 〈A, R〉, R
is a system of equations. For example, in R : Y = β0+β1X +ε, the relation R is deter-
mined by the structural parameters {β0,β1}. These parameters are usually estimated
by estimators based on sample data. A key question here is whether this model can
represent the target system? The weak answer runs into no controversies. However,
the strong answer faces two problems: 1) underdetermination of the estimation of
parameters and 2) the context-dependency of the interpretation of the parameters.
In the following section, we examine these two problems.

3.1. Underdetermination of the estimation of parameters

One task of statistical inference is to estimate model parameters. The statistical equa-
tions are then determined by the parameters thus estimated. Understanding the “role
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of structural relations between a statistical model and the related target system” re-
lies on the examination of the estimation process. We begin with the properties of a
good estimator in classical statistics.15

The goal of point estimation is to make a reasonable guess at the unknown value
of a designated population quantity, such as model parameters. This comprises an
estimation procedure, or an ‘estimator.’ Typically, a point estimator is any function
U = f (X1, X2, . . . , Xn) of a sample (Cassella and Berger, 2002: 311). The result of
applying the estimator to the data is an estimate.

There are several techniques for finding point estimators. But how can we tell if
a method of point estimation is best? For the classical approach to estimation, which
assumes that there is some fixed, but unknown, true value for the parameter being
estimated, we would ideally like to identify the superior alternative from among the
different estimators available. Unfortunately, since the true value is unknown, we can
never know this exactly. It is, therefore, better to study the estimation procedures
and to identify the statistical properties that these random variables possess. In the
present case, four properties of statistical models are worth noting:

1. Unbiasedness. An estimator θ̂ is said to be unbiased for θ if E(θ̂ ) = θ . Thus, on
average, the procedure for guessing the real value of θ produces the correct
value. The property of unbiasedness is intuitively appealing and is, in most
cases, quite useful.

2. Precision. Usually the concept of precision is referred to as the variance. Thus,
the smaller the value of Var(θ̂ ), the more precise θ̂ will be.

3. Efficiency. Often, estimators are not both unbiased and precise. Efficiency is
related to the concept of mean squared error which is expressed by MSE(θ̂ ) =
E(θ̂ − θ )2. MSE incorporates two components, one measuring the variability
of the estimator (precision) and the other measuring its bias (accuracy). The
estimator θ̂1 is said to be more efficient than θ̂2 if MSE(θ̂1) ≤MSE(θ̂2) for all
θ , (and inequality strictly holds for at least one θ).

4. Consistency. An estimator θ̂ is said to be consistent for θ if the estimator θ̂
converges in probability to θ with increasing sample size. The property of con-
sistency is an essential one because it ensures that the criterion converges in
probability to the true value.

The aforementioned criteria can be used in the assessment of any estimator and
in the selection of an appropriate estimator from among different alternatives.

From a structural viewpoint, if the parameters and coefficients are not fully de-
termined (underdetermined), Then, the equation R and the statistical model M will
not be fully determined. But based on different alternative estimators, choosing the

PRINCIPIA 23(1): 113–129 (2019)



Toward the Applicability of Statistics 119

appropriate estimator depends on the agent. In this case, no determined mapping
function, f , is established between R and the relation L in the target system so that
the representation of the target system by the model will depend on the agent func-
tion. This is the first problem faced within the strong answer to the representational
role of statistical models.

3.2. Context-dependency in interpretation of parameters

There are other problems faced by the independent interpretation of coefficients. To
investigate these problems in statistical models, we will reconsider the simple linear
regression, Y = X + ε. Let us suppose that a connection exists between X and Y
that is represented by β . If we interpret the coefficient β as the change in E(Y ) per
unit change of X , then, after rewriting the equation as X = (Y − ε)/β , we ought to
interpret 1/β as the change in E(X ) per unit change of Y . But this is in conflict with
both our intuitions and model predictions. The change in E(X ) per unit change of
Y ought to be zero if Y does not appear as an independent variable in the original
equation.

Teachers of statistical methods generally adopt one of two escape routes to avoid
this dilemma. One route involves denying that β represents a real connection in the
target system and that β is settled for a purely statistical interpretation in which β
measures the reduction in the variance of Y explained by X (Multhen, 1987). The
other route permits real connections for only those coefficients that meet the “isola-
tion” constraint (Bollen, 1989; James et al., 1982); the explanatory variable must be
uncorrelated with the error in the equation. Because ε cannot be uncorrelated with
both X and Y (or so the argument goes), β and 1/β cannot both have a real meaning
or interpretation in the target system, thus, the paradox is resolved.

The first route is self-consistent, but it denies any real interpretation of the pa-
rameters. The second is vulnerable to logical criticism on the grounds that both α
and β represent a real connection in the subject under study. It is well-known that
every pair of bivariate normal variables, X and Y , can be expressed in two equivalent
ways,

Y = βX + ε1 or X = βY + ε2,

where Cov(X ,ε1) = Cov(Y,ε2) = 0 and α = rX Y = (ε2
X/ε

2
Y )β . Thus, if the condition

Cov(X ,ε1) = 0 endows β with a real meaning and interpretation, then Cov(Y,ε2) =
0 ought to endow α with a real meaning as well. But this, too, is in conflict with
both intuition and the intentions behind regression and other structural models. The
change in E(X ) per unit change of Y ought to be zero, rather than rX Y , if there is no
real path from Y to X (Pearl, 2009: 159–160).
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The two problems raised above — that are, the underdetermination of estima-
tion and the context-dependency of the interpretation of model coefficients — lead
us to say that we cannot claim any determined mapping function exists between the
statistical model and the relations in the target system as the sufficient condition for
representation. We cannot, therefore, claim either that the structural coefficients of
scientific models contribute to the content of representation. We cannot have a real
interpretation of estimated parameters, nor can we exactly know about our estima-
tions. If so, then what is the role of statistical estimation in the representation by sta-
tistical models? Clearly, estimation of parameters is not part of the representational
content; thus, the strong answer is ruled out. Indeed, we can say that the statistical
elements and relations have extrinsic roles to play in scientific representation.

4. Agent-based components of statistical model
representation

In the previous section, it was shown that the statistical elements of a scientific model
have no more of a mapping role in the representation content than does the con-
ceptual model; hence, the purely structural view is not adequate for explaining the
representation by and the applicability of statistics. The question that awaits an an-
swer is whether there are cognitive components in statistical modeling that have a
constitutive role in representation and applicability? In what follows, we will first
introduce the agent-based components in statistical modeling, and then proceed to
identify the component(s) which is/are constitutive in representation.

4.1. Agent-based components in statistical modeling

Drawing upon different principles, different paradigms of statistical inference have
been developed. The following three are more common in current use: 1) Classi-
cal or frequentist statistics, 2) Bayesian statistics, and 3) Likelihood-based statistics.
The first step in the agent-based statistical modeling is the selection of a statistical
paradigm. These paradigms differ in a number of ways as outlined below.

The first difference concerns an interpretational one. While the classical and
likelihood-based statistics are based on the physical interpretation of random vari-
ables, the Bayesian one relies on an epistemic interpretation of random variables
(Freedman, 1995; Berger, 1995; Bandyopadhyay and Forster, 2011). In the physical
interpretation, random events and chances are regarded as frequencies, or propor-
tions, in a class of similar events or items. According to the epistemic interpretation,
probabilities may be taken to represent the strength or degree of belief (Gillies, 2000).
In this context, the key point is that interpretations can all be connected to founda-
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tional paradigms of statistical inference. Thus, certain cognitive activities, such as
interpretation, are performed in drawing statistical inferences.

The second difference is one of underlying intentions. For illustration, let us con-
sider two hypotheses: H, stating that a patient suffers from tuberculosis, and∼ H, its
denial. Let us further assume that an X-ray, which is administered as a routine test,
turns out to be positive for the patient. Based on this simple scenario and following
Richard Royall (1997), one could raise three questions that underlie the epistemo-
logical issue at stake within the three competing statistical paradigms:

(a) Given the datum, what should we do?
(b) Given the datum, what should we believe and to what degree?
(c) What does the datum say regarding the evidence supporting H over its alterna-

tive?

The first question is called the decision question, the second is the belief question,
and the third is the evidence question. Royall maintains that classical statistics ad-
dresses the decision question, that Bayesians address the belief question, and that it
is only the likelihood paradigm that addresses the evidence question (Royall, 1997).
Whether or not any relationship can be established between classical statistics and
the decision question, there always remain three goals and intentions in any statisti-
cal investigation and certain cognitive activities, such as intention, that are performed
in statistical inference.

Based on the paradigmatic differences, there are two agent-based components
involved: 1) interpretation of random variables, and 2) the intentions underlying a
statistical inference.

The third agent-based component is “choosing an appropriate estimator.” The
goal of point estimation is to make a reasonable guess at the values of the parame-
ters. A difficulty that arises is cases where there are different estimators from among
which the statistician needs to select an appropriate one (Figure 1). We recall from
Section 3.1 that the properties of a good estimator in classical statistics include bi-
asedness, consistency, precision, and efficiency which are used by the statistician as
the criteria in selecting an appropriate estimator. This selection process is an agent-
based component.

It is clear thus far that, in statistical modeling, there exist the three agent-based
components of 1) interpretation of random variables, 2) intentions underlying a sta-
tistical inference, and 3) choosing an appropriate estimator.

4.2. Constitutive components

Based on the mapping account presented above, an agent could use a representation
for understanding a target system. There can be agent-based components in model-
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Figure 1: Agent-based components in estimation.

ing, but this representation is not constituted by the agent. That is, the ‘vehicle’ of
representation represents the ‘target’ of the representation in virtue of the fact that
the vehicle produces a state with the appropriate content (Bueno and French, 2011,
p. 871-873). Now, we may ask whether these functional activities are constitutive
for scientific representation. In other words, there are alternative relations between
source and target, but a specific relation is not determined, unless, an agent deter-
mines a special relation, so this special relation as a representation is constituted by
the agent.

From a functional viewpoint, a scientific representation is a tripartite relation-
ship, RS(M , T, A), where M is the model, T is the target system, and A is the set of
agent-based components. From an informational viewpoint, the scientific representa-
tion is a bipartite relationship, RS(M , T ). Within the framework of the informational
approach, one can ask whether or not the model, M , represents the target system, T?
In the functional approach, however, the question of whether the operating model,
M , represents the target system, T should be asked from the agent, A?

The agent is constitutive for the representation. If there are several distinct and
rival mappings, F : { f1, f2, . . . , fn}, between the model, M , and the target system, T ,
then each mapping, fi , leads to different structural similarities, and it is the agent
who selects one from among them. The change in the mapping leads to changes
in the representation. Thus, the representation not only depends on the model, M ,
and the target system, T , but also on the “selection”, “intention”, or “interpretation”
rendered by the agent.

The next question that may be raised is whether the representation by a statistical
model depends on the paradigms and the estimator selected by the modeler? To
answer this question, two scenarios may be considered (Figure 2):

(a) The agent-based components take place prior to the modeling while there are
also different models to choose from; or
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(a) (b)

Figure 2: Two scenarios for the relationship between the model and the target sys-
tem. (a) The agent-based components are prior to modeling. (b) The agent-based
components are posterior to modeling.

(b) The agent-based components are posterior to modeling.

Under scenario (a), the models depend on the agent, but there is a function map-
ping between the model and the target system. Under scenario (b), the representation
depends on the agent-based components. It seems that the selection of the “goal of
inference” and the “estimator” takes place prior to the modeling, while the interpre-
tation of the statistical model is second. If the agent judges that a paradigm or an
estimator is appropriate, there will be no structural relationship between the model
and the target system. In scenario (a), M and T depend on A. Thus, the representation
depends on the agent as well.

The three steps of mathematical application of Bueno and Colyvan (2011) are
helpful in describing the inferential concept of statistical models:

1. Immersion: the first step consists of establishing a mapping from the empirical
set-up to a convenient mathematical structure.

It is doubtful whether this step can be accomplished in physical models since
these models are not constructed based on data. In statistical modeling, however,
immersion can be implemented by data collection.

2. Derivation: the second step consists in drawing the consequences from mathe-
matical formalism using the mathematical structure obtained in the immersion
step. This is the key point in the application process, whereby consequences
from mathematical formalism are generated.

Statistical inferences, as in estimation and descriptive statistics, are derived from
the database structures and turned into equations.

3. Interpretation: we interpret the mathematical consequences obtained in the
derivation step in terms of the initial empirical set-up. To establish an inter-
pretation, a mapping from the mathematical structure to the initial empirical

PRINCIPIA 23(1): 113–129 (2019)



124 Ashoori and Taheri

(a)

(b)

Figure 3: The three-step scheme of applicability. (a) Bueno and Colyvan’s scheme.
(b) Three steps of applicability of statistics.

set-up is needed. This mapping need not be simply the inverse of the mapping
used in the immersion step.

We can expect that statistical models represent aspects of the world, and that it is
the interpretation step that carries out the task of representation. Figure 3 develops
these steps by Bueno and Colyvan (2011) in statistics.

According to Bueno and Colyvan, the inferential conception involves the follow-
ing two steps: 1) immersion, and 2) interpretation (2011, p. 356), however, we show
in this section, the derivation step in statistics is also agent-based. In addition, the
agent is in a position to affect the mapping between the empirical set-up and the
statistical structure.

5. Representation of statistical models

A theory of representation expresses the necessary and sufficient conditions for sci-
entific representations along the following lines:
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The model or the scientific theory, M (source), represents the target system,
T , if and only if (1) . . . , (2) . . . , and . . .

These theories state how the source of scientific representation represents the
target system. As already mentioned, two accounts may be suggested as for the na-
ture of scientific representation: 1) the informational account, which emphasizes the
objective structural model and their target systems; and 2) the functional account,
which emphasizes the cognitive activities and the agent’s role in connection with
these targets (Chakravartty, 2010; Giere, 2010).

In the informational account, the statistical models are representative if there are
relevant structural similarities between the statistical model and the relations in the
empirical system under study. In its broad sense, there could be a homomorphism
between the statistical model and the relations in the empirical system.

In Section 2, we showed the structural virtues in statistical models that can rep-
resent the physical set-up as a target system.

In Section 3, we showed that no exact structural similarity could exist between
statistical parameters determining the structural model and the real relations in the
target system under study. In other words, the true values of the parameters and the
statistical equations determined by these parameters are unknown. The estimated
values might be true, but we cannot use them to interpret the structural relations.
Then, in the representations by the statistical models, the informational view does
not meet the condition of sufficiency.

In Section 4, we showed that there are agent-based components that might be
constitutive in the representations by statistical models.

We can, thus, claim that a statistical model represents the subject matter itself, if:

1. There are some relationships, as structural virtues, in the statistical model that
resemble the target system; and

2. The agent identifies these relationships as appropriate for representing the re-
lations in the subject under study based on: 2a) the interpretation of random
variables, 2b) the goal of the statistical research, and 2c) the properties of the
estimators.

This theory of “Representation of Statistical Models” is a hybrid account from
informational and functional that is based on structural similarities between the sta-
tistical model and the empirical system under study, and assessment of the agent in
using these structural similarities to represent the target.
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6. Conclusion

In this paper, we evaluated the claim that “statistical models are applicable if they
represent the empirical system under study”. In representation theories, we stud-
ied: 1) structural similarities between the model and the target system, and 2) the
agent-based components of statistical modeling to propose a hybrid account of rep-
resentation by statistical models. Based on this account, we may claim that statistical
models are applicable if they represent the empirical system under study. Statistical
inference does not, however, play a role in the content of representation because the
estimation of parameters and the statistical equations are unknown.

Moreover, the following claims were investigated:

1. We can explain the applicability of statistics by its representational properties;
but

2. The representation of statistical models is not purely structural;

3. The representation of statistical models is based on structural similarities be-
tween the statistical model and the empirical system under study; but

4. It is the agent who identifies these relationships as appropriate for representing
the relations in the target system; and

5. The agent-based components of statistical modeling are: a) interpretation of
random variables, b) selection of the goals of the statistical research, and c) se-
lection of the estimator properties.

In future studies, the relationships between explanation and representation in
statistical models may be explored.
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Notes
1Regarding fictionalism, scientific representation is not an essential property (Frigg, 2006,

p 50).
2For interpretation, see Hughes (1997, p. 332) and Contessa (2007, pp. 57-61).
3For inference, see Suarez (2004, p. 770).
4For an agent-based account, see Giere (2010, p. 274).
5For isomorphism, see van Fraassen (2008, p. 18 and p. 208), and French (2003, p. 1482).
6For partial isomorphism, see da Costa and French (2003, Chap. 3).
7Bartels (2006, p. 17) says that similarity is a symmetrical relation, and homomorphism is

not. But Chakravartty (2010, p. 199) thinks that if there is a homomorphism from A onto B,
then A and B have some structure in common, and are thus similar (indeed, exactly similar)
in that respect.

8For a review of mathematical structuralism see Nodelman and Zalta (2014), Shapiro
(1997, 2004) and Parsons (1990). But Pincock (2007), Bueno and Colyvan (2011), and Bat-
terman (2010) focus on the applicability problem.

9According to a purely structural account, as labeled by Pincock (2004), “the existence
of an appropriate mapping from a mathematical structure to a physical structure is sufficient
to fully explain the particular application of the mathematical structure in question” (Bueno
and Colyvan, 2011: 345–346, our emphasis). Batterman points out that “Bueno and Colyvan
are a bit uncharitable in their sufficiency claim of mapping according to Pincock” (Batterman,
2010: 9). Whether this interpretation is correct or not, in a purely structural view, “the ap-
plicability of mathematics is fully accounted for by structural relations” (Bueno and Colyvan,
2011). In other words, the representational role is primitive and other roles are reduced to
representational properties. In the general structural view, the mapping account of the appli-
cability of mathematics is correct as far as it goes, but it does not go far enough — so some
modifications are required in the purely structural view of applicability.

10According to structuralism, mathematical objects relate to each other and are relational
things, while set-theory provides a language to present them.

11For more details about the structural and set-theoretic views about models, see da Costa
and French (2003: Chapters 2 and 3).

12The structural coefficients of equations consist of two groups: parameters and random
variables. βi ’s are parameters that are numbers that summarize data for an entire population,
but ε is a random variable, because this coefficient represents factors that are ignored.

13In philosophy of science, the predicate of underdetermination is used for both entities
and scientific theories. The most famous use of this term is related to the question of the
rationality of scientific theories and model selection. The thesis of underdetermination claims
that empirical evidence alone cannot set a theory against competing theories, that is, we
cannot select a theory only by empirical evidence. The opponents of rationalism, using the
thesis of underdetermination, are struggling to rationalize scientific theories. However, the
use of underdetermination in this paper, focuses on determining the statistical model by the
data set. Our claim is semantic, not epistemological. We want to show that statistical models
are determined, but this determination is not realized only by data, they are determined by
data and the functions of agent.

14 The distinction between intrinsic and extrinsic roles in scientific representation are due
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to Pincock (2012, Chapter 1). He distinguishes between the mathematical content of the rep-
resentation itself and the mathematical techniques that were used to arrive at that represen-
tation. The mathematics of a representation is called intrinsic when it figures in the content
of the representation. But there are usually additional extrinsic mathematical elements that
contribute to the representation beyond those that figure in the content.

15The Bayesian approach to statistical inference considers some different criteria to pro-
duce and to evaluate an estimator. The difference between classical and Bayesian approaches
to statistical inference is out of the scope of this article. According to the Bayesian approach,
the parameters are random variables and they are radically unknown. The interested reader
is referred to Royal (1997) and Robert (2007).
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