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1. Introduction

A usual procedure in the development of the concept of magnitude consists in defin-
ing magnitude as an ordered commutative or Abelian semigroup. Historically, this con-
ception has its roots in the first modern axiomatizations of the notion of magnitude,
in the works of Otto Stolz (1883, 1885), Otto Hölder (1901) and Edward Huntington
(1902). A main motivation in the emergence of the modern theory of magnitude was
to provide a general axiomatic foundation for this notion, which could adequately in-
corporate “numerical” as well as “geometrical” kinds of magnitudes. Metatheoretical
issues, such as the independence of continuity conditions (viz., the Archimedean ax-
iom) from other axioms of magnitude, were also a central concern in this context.
Philosophically, the main goal was to achieve a conceptual elucidation of perhaps
the most fundamental mathematical concept of Greek mathematics, but which was
never explicit or clearly explained.
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The “standard” analysis of the concept of magnitude can be described in schematic
terms as follows.1 One start by postulating a relation of equivalence ∼ for a given set
of elements which satisfies the usual following properties:

(Rf[∼]) Reflexive for every a: a ∼ a.

(Sm[∼]) Symmetric for all a,b: if a ∼ b, then b ∼ a.

(Tr[∼]) Transitive for all a,b,c: if a ∼ b and b ∼ c, then a ∼ c.

Then, one introduces a binary operation of addition (;) which satisfies the asso-
ciative property:

(Asc) Associativity for all a,b,c: (a ;b) ;c = a ; (b ;c).

We thus obtain the structure of a semigroup. If the addition operation also satisfies
the commutative property, the semigroup is called commutative or Abelian:

(Com) Commutativity for all a,b: a ;b= b ;a.

A relation of strict ordering can be then introduced with the help of the oper-
ation of addition, by postulating that this operation also satisfies the comparability
property:

(Cmp) Comparability for all a,b, there exists a c such that exactly one

of the following conditions holds:

a = b ;c or b = a ;c or a = b

The latter condition suggests the following definition of strict order:

(≺) Strict order a ≺ b iff there exists a c such that a ;c= b.

One can employ the properties of equivalence and addition specified above to
prove that this relation of ordering satisfies the following properties:

(Tr[≺]) Transitive for all a,b,c: if a ≺ b and b ≺ c, then a ≺ c.

(Asm[≺]) Asymmetric for all a,b:

if a ≺ b then b ⊀ a and if b ≺ a then a ⊀ b

(Tri[≺]) Trichotomy for all a,b:

a ≺ b or b ≺ a or a = b.
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The relation of order thus defined is then a strict total ordering.2 Finally, one
further assume that the addition also satisfies the monotonicity law, namely:

(Mn) Monotonicity for all a,b,c: if a ≺ b, then a ;c ≺ b ;c.3

A related analysis of the concept of magnitude, but with a very different goal, was
offered by Łomnicki (1922).4 In particular, Łomnicki develops a system of axioms for
magnitudes, with three primitive concepts (∼,<,>), with the aim of investigating the
interpretation of these axioms within the geometrical theory of equivalence.5 Another
central concern here was to achieve a better understanding of the logical relations
between the general axioms of order of magnitudes and the fundamental proposition
about polygonal area known as De Zolt’s principle. This principle is usually stated as
follows: “If a polygon is divided into polygonal parts in a given way, then the union
of all but one of these parts is not equivalent to the given polygon”.6 The central
significance of this principle for the theory of geometrical equivalence concerned
the existence of a relation of (total) order for plane polygons: if this proposition
would not be valid, a polygon could be lesser in area than itself, and (geometrical)
equivalence and non–equivalence could not be regarded as magnitude relations.

Łomnicki postulates as axioms the above specified properties of equivalence (re-
flexive, symmetric and transitive) and three properties of strict order, namely transi-
tive, trichotomy and the following condition:

(Sco[≻]) Strict converse order for all a,b: if a ≻ b then b ≺ a.

An interesting problem originally investigated by Łomnicki concerned the formu-
lation of trichotomy. Łomnicki claimed that in the presence of the axioms of equiva-
lence (∼) the trichotomy axiom can be obtained by means of two logical independent
propositions. He designated these propositions the completeness of trichotomy and the
principle of disjunction. More specifically, Łomnicki suggested that the latter propo-
sition could be conceived as an “abstract version” of De Zolt’s principle, within the
framework of a general theory of magnitudes . These propositions are then stated as
follows:

(Ctr[≺]) Completeness of trichotomy for all a,b:

if a ̸∼b, then either a ≻ b or a≺ b.

(Dzt[≺]) De Zolt for all a,b: if a ∼ b, then a ⊀ b.

Łomnicki’s concise analysis into the concept of magnitude suggests us that a chal-
lenging issue for the development of a theory of magnitudes consists in incorporating
or reflecting the specific geometrical properties stated in De Zolt’s principle. In other
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words, a starting point for the construction of a “well–behaved” theory of magni-
tude might consist not only in formulating the latter principle in an adequate and
precise way, but also in deriving it from the basic principles of equivalence, compari-
son and addition of magnitudes. The analysis of the concept of magnitude presented
in the next sections is then oriented towards the problem of providing a proof of De
Zolt’s principle, in an abstract setting. Although this proof will be provided in another
work, the present examination will be relevant for the understanding of the logical
relations between the properties of comparison, equivalence and addition of magni-
tudes. Section 2 examines principles and properties of comparison and equivalence
of magnitudes. Section 3 considers magnitude addition and comparison. Section 4
presents some concluding remarks. Appendix A fills in the details of the mathematical
results presented here.

2. Comparison and Equivalence

We begin with basic and derived properties of comparison and equivalence. We also
raise some questions regarding independence and definability. As basic properties of
equivalence we take the already specified properties of identity =: reflexive (Rf[∼]),
symmetric (Sm[∼]) and transitive (Tr[∼]). Similarly, as basic properties of compari-
son ⪯, we assume the following familiar properties of ≤:

(Rf[⪯]) Reflexive for every a: a ⪯ a.

(Tr[⪯]) Transitive for all a,b,c: if a ⪯ b and b ⪯ c, then a ⪯ c.

(Tt[⪯]) Total for all a,b: a ⪯ b or b ⪯ a.

As basic properties connecting equivalence and comparison, we take some famil-
iar properties of identity = and ≤:

(∼⇒⪯) Equivalence and comparison for all a,b: if a ∼ b, then a ⪯ b.

(⪯⇒∼) Comparison and equivalence for all a,b: if a ⪯ b and b ⪯ a, then a ∼ b.

We can also introduce some defined comparisons.

(⪰) Converse comparison for all a,b: a ⪰ b iff b ⪯ a.

(≺) Strict comparison for all a,b: a ≺ b iff a ⪯ b and a ̸∼b.

(≻) Strict converse comparison for all a,b: a ≻ b iff b ≺ a.
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We now give some models for equivalence and comparison.

Example 2.1 (Models for ∼ and ⪯). The basic properties of ∼ and ⪯ have numerical
models with a ∼ b iff a = b and a ⪯ b iff a ≤ b: (N) naturals, (Z) integers, (Q)
rationals, (R) reals, and their subsets consisting of the numbers above 1.

The next result gives some derived properties of equivalence and comparison.

Lemma 2.1 (Derived properties of ∼ and ⪯). Equivalence ∼ and comparison ⪯ have
the following derived properties.

1. For all a,b: if a ∼ b, then b ⪯ a.

2. For all a,b: a ∼ b iff a ⪯ b and b ⪯ a.

Proof. The first one follows from (∼⇒⪯) by (Sm[∼]) and the second one follows from
the first one by (⪯⇒∼).7

We now examine questions about definability and independence. We first con-
sider the definability of equivalence from comparison

Question 2.1. Can we define equivalence ∼ from comparison ⪯?

Answer. Yes: define ‘a ∼ b’ as “a ⪯ b & b ⪯ a” (see Lemma 2.2: ∼ from ⪯.)

Lemma 2.2 (∼ from ⪯). Assume a ∼ b ↔ a ⪯ b ∧ b ⪯ a. Then, ∼ is symmetric,
(Rf[⪯]) yields (Rf[∼]) and (Tr[⪯]) yields (Tr[∼]).

Proof. (Sm[∼]) Clearly ∼ is symmetric. (Rf[∼]) Since a ⪯ a (by (Rf[⪯])), we have
a ⪯ a and a ⪯ a, whence a ∼ a. (Tr[∼]) Given a ∼ b and b ∼ c, we have a ⪯ b,
b ⪯ a, b ⪯ c and c ⪯ b, thus (by (Tr[⪯])) a ⪯ c and c ⪯ a, whence a ∼ c.

Proposition 2.1 (Equivalence definable). Equivalence∼ is definable from comparison
⪯.

Proof. By Lemma 2.2 (∼ from ⪯, p. 157).

We now examine whether the totality property for comparison is independent
from the other basic properties of comparison.

Question 2.2. Is the totality property for comparison ⪯ independent from the other
basic properties for ⪯?

Answer. Yes: we have counter-models (see A.1, p. 163).

Proposition 2.2 (Totality independence). The totality property (Tt[⪯]) is independent
from the basic properties (Rf[⪯]) and (Tr[⪯]).
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Proof. See A.1 ( Comparison and Equivalence: details, p. 164).

We next consider the definability of comparison from equivalence.

Question 2.3. Can we define comparison ⪯ from equivalence ∼?

Answer. No: we have counter-models. (See A.1, p. 164.)

Proposition 2.3 (⪯ not definable from∼). Comparison⪯ is not definable from equiv-
alence ∼.

Proof. See A.1 (Comparison and Equivalence: details, p. 165).

3. Comparison and Addition: simplified approach

We now examine comparison and simple addition. We identify some basic properties
of simple addition and study independence and definability. As motivating examples
of addition we consider concatenation of lines at a common point (see Example 3.1,
p. 158), and gluing of polygons along a common side (see Example 3.2, p. 159). In
general, one expects addition to cause an increase; however, concatenation with a
single-point straight line does not alter the line (see Example 3.1, p. 158).

Example 3.1 (Concatenation of lines). Fig. 1 (p. 158) illustrates concatenation of
“proper” straight lines r and s: notice that r ≺ r ; s ≻ s. Fig. 2 (p. 158) illustrates
concatenations with single-point straight lines B and A: notice that r ;B = r and A ; r =
r.

Figure 1: Concatenation of “proper” straight lines

A r →→ B = C s →→ D ↦→ A
r ; s →→ D

Figure 2: Concatenations with single-point straight lines

A r →→ B = B ↦→ A r →→ B

A = A r →→ B ↦→ A r →→ B
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We now formulate these ideas in an abstract setting.
Consider a magnitude t. Call t left trivial iff t ;b ⪯ b, for some magnitude b; call

t right trivial iff a ; t ⪯ a, for some magnitude a (see Tab. 1, p. 159). A magnitude
is trivial iff it is left or right trivial (see Tab. 2, p. 159). A magnitude is proper iff it is
not trivial.

Table 1: Left and right trivial magnitudes

t: left trivial t: right trivial
⇕ ⇕

∃b ( t ;b ⪯ b ) ∃a (a ; t ⪯ a )

Table 2: Trivial magnitude t

t ∈ Trv ⇔
�

∃b ( t ;b ⪯ b )
⏞ ⏟⏟ ⏞

left trivial

or ∃a (a ; t ⪯ a )
⏞ ⏟⏟ ⏞

right trivial

�

The next result characterizes left and right trivial magnitudes via equivalence.

Lemma 3.1 (Trivial). Magnitude t is left trivial iff t ;b ∼ b, for some magnitude b.
Magnitude t is right trivial iff a ; t ∼ a, for some magnitude a.

Proof. By the domination for ; and the definition of ∼ in Lemma 2.2 (∼ from ⪯,
p. 157).8

The trivial magnitudes are closed under equivalence.

Corollary 3.1 (Trivial and ∼). If c∼ d, then c is trivial iff d is trivial.

Proof. By Lemma 3.1 (Trivial, pp. 159) and properties (Rf[∼]) (2, p. 154) and (Tr[∼])
(2, p. 154), and Lemma 3.3 (Properties of ;, pp. 161).9

As Fig. 2 (p. 158) suggests, a trivial magnitude is “absorbed” by the result of
addition. Example 3.2 (p. 159) examines cases of polygons and sides.

Example 3.2 (Trivial gluings). Fig. 3 (p. 160) illustrates cases of gluing a triangle and
its side: compared to the triangle, its sides have lower order.10

The preceding considerations suggest some basic properties of simple addition,
which we assume associative: a ; (b ;c) = (a ;b) ;c.
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Figure 3: Gluing triangle and side

;

= ϵ

;

= η

(Dm) Domination for all a,b: a ⪯ a ;b and b ⪯ a ;b.

(Mn) Monotonicity for all a,b,c,d: if a ⪯ c and b ⪯ d, then a ;b ⪯ c ;d.

(Cn) Non-trivial cancellations left and right cancellations

(←) Left cancellation for proper b,c: if a ;b ⪯ a ;c, then b ⪯ c.

(→) Right cancellation for proper a,b: if a ;c ⪯ b ;c, then a ⪯ b.

The next result gives some numerical models for simple addition ; (see also Tab. 3:
Numerical models for ; , p. 161).11

Lemma 3.2 (Models for ;). The basic properties of ; have numerical models (with
a ⪯ b iff a ≤ b): (N) naturals with a ;b := a + b (sum); (N1) naturals above 1 with
a ;b := a · b (product); (Q0) non-negative rationals with a ;b := a + b (sum), (Q1)
rationals above 1 with a ;b := a ·b (product), (R0) non-negative reals with a ;b := a+b
(sum) and (R1) reals above 1 with a ;b := a · b (product).

Proof. By properties of ≤, + and ·. It suffices to check that the properties hold in
〈R0 :≤,+〉 and 〈R1 :≤, ·〉. Then, these universal properties will hold in the sub-
structures 〈N :≤,+〉, 〈N1 :≤, ·〉, 〈Q0 :≤,+〉 and 〈Q1 :≤, ·〉.12

The next result gives some derived properties of simple addition (;).

Lemma 3.3 (Properties of ;). Simple addition ; has the following properties.
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Table 3: Numerical models for ;

Universe N N1 Q0 Q1 R0 R1

; a + b a · b a + b a · b a + b a · b

1. Invariance for all a,b,c,d: if a ∼ c and b ∼ d, then a ;b ∼ c ;d.

2. ⪯-cancellation for proper b,c: if a ;b ;d ⪯ a ;c ;d, then b ⪯ c.

3. ∼-cancellation for proper b,c: if a ;b ;d ∼ a ;c ;d, then b ∼ c.

Proof. By Lemma 2.1 (Properties of ∼ and ⪯, p. 157), and basic properties of ⪯
(Sct. 2, p. 156) and of ; (Sct. 3, p. 159).13

We now examine questions concerning definability and independence. First, we
examine definability of simple addition ; versus comparison ⪯.

Question 3.1. Can we define simple addition ; from comparison ⪯?

Answer. No: we have counter-models. (See A.2, p. 166.)

Proposition 3.1 (; not definable from ⪯). Simple addition ; is not definable from
comparison ⪯.

Proof. See A.2 (Comparison and Simple Addition: details, p. 166).

Question 3.2. Can we define comparison ⪯ from simple addition ;?

Answer. No: we have counter-models. (See A.2, p. 167.)

Proposition 3.2 (⪯ not definable from ;). Comparison ⪯ is not definable from simple
addition ;.

Proof. See A.2 (Comparison and Simple Addition: details, p. 168).

We now examine independence of simple addition ; from comparison ⪯.

Question 3.3. Is each basic property of simple addition ; independent from the others
in the presence of those of comparison ⪯?

Answer. Yes: we have counter-models. (See A.2, p. 168.)

Proposition 3.3 (Simple addition ; independence given ⪯). Each basic property of
simple addition ; is independent from the others in the presence of the basic properties
(Rf[⪯]), (Tr[⪯]) and (Tt[⪯]) of comparison ⪯.

Proof. See A.2 (Comparison and Simple Addition: details, p. 170).
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4. Conclusion

We have examined magnitude equivalence ∼, comparison ⪯ and addition ; in an
abstract setting. We have stressed two issues: independence and definability. For de-
finability, we have shown a positive result and some negative results.

(+) As positive result we have: equivalence ∼ is definable from comparison ⪯,
namely by a ∼ b ↔ a ⪯ b ∧ b ⪯ a.

(−) As negative results, we have the following ones.

1. Comparison ⪯ is not definable from equivalence ∼.

2. Simple addition ; is not definable from comparison ⪯.

3. Comparison ⪯ is not definable from simple addition ;.

Concerning independence, we have established some positive results about com-
parison ⪯ and simple addition ;.

(⪯) The totality basic property (Tt[⪯]) is independent from the other basic proper-
ties of ⪯, i. e. {Rf[⪯],Tr[⪯] } ̸|= Tt[⪯].

(;) Each basic property of ; is independent from the others in the presence of those
for ⪯ (see Tab. 4: Independence of basic properties of ;, p. 162).

Table 4: Independence of basic properties of ;

(̸Dm) {Rf[⪯],Tr[⪯],Tt[⪯] } ∪ { (Mn), (Cn)} ̸|= (Dm)

(̸Cn) {Rf[⪯],Tr[⪯],Tt[⪯] } ∪ { (Dm), (Mn)} ̸|= (Cn)

(̸Mn) {Rf[⪯],Tr[⪯],Tt[⪯] } ∪ { (Dm), (Cn)} ̸|= (Mn)

Let us recall that our initial motivation was a geometrical one: to formulate and
establish an abstract version of De Zolt’s principle. For this purpose, one can proceed
as follows:

1. Start with the basic properties of comparison ⪯ (cf. Sct. 2, p. 156).

2. Add equivalence ∼ by definition (cf. Lemma 2.2, p. 157).

3. Add the basic properties of simple addition ; . (cf. 3, p. 159).
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Now, in a geometrical context, De Zolt’s principle states that if a plane polygon
is decomposed in any given way in a (finite) number of triangles, and then one of
these triangles is removed, it is not possible to obtain a new polygonal figure equal
in area to the original one. The geometrical proof of this principle is rather difficult
and complex, but involves only elementary concepts.

In our abstract setting the idea of decomposition of polygons corresponds to the
concept of a list of compatible proper magnitudes. A truncation of a given decomposi-
tion is then a sub–list including all its elements but one. Using these notions, we thus
have the following abstract version of De Zolt’s principle:

Consider a proper decomposition p of m. Then, for each truncation q of p: q
is not a proper decomposition of m.

Our formulation of De Zolt’s principle simply states that one cannot remove any
proper magnitude from a proper decomposition. With the introduction of these ad-
ditional concepts, one obtains what we can call a theory of "compatible" magnitudes.
In this specific development of the theory of magnitudes neither the commutativity
property of addition nor the Archimedean axiom are assumed.

A. Some Details

We provide here some details about comparison and equivalence (A.1, p. 163), and
comparison and simple addition (A.2, p. 166).

A.1. Comparison and Equivalence: details

We provide now some details about comparison and equivalence (cf. Sct. 2, pp. 156–
158). First, we examine models for Question 2.2 (cf. p. 157): independence of Tt[⪯].

1. Finite model F
Consider the 3-element model with ⪯= {(a,a), (a,b), (b,b), (c,c)} (see Fig. 4:
Finite model F, p. 164).14

2. Complex model C
Complex numbers with a+ b · i ⪯ c+ d · i iff a ≤ c and b ≤ d (see Fig. 5:
Complex model C, p. 164).

Lemma A.1 (Finite model F). Finite model F (of Fig. 4, p. 164) satisfies Rf[⪯] and
Tr[⪯], but not Tt[⪯].

Proof. Elements b and c are incomparable.
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Figure 4: Finite model F

a ≺ →→

∼

↗↗ b

∼

↗↗ c

∼

↗↗

Figure 5: Complex model C

b

↑↑

a+ b · i

0 a →→

Remark A.1 (Complex model C). Complex model C (of Fig. 5, p. 164) satisfies Rf[⪯]
and Tr[⪯], but not Tt[⪯].15

We thus have the independence of Tt[⪯] from the other basic properties of ⪯.

Proposition 2.2 (Totality independence) The totality basic property (Tt[⪯]) is inde-
pendent from the basic properties (Rf[⪯]) and (Tr[⪯]).

Proof. By Lemma A.1 (Finite model F, p. 163) or Remarks A.1 (Complex model C,
p. 164).

We now examine models for Question 2.3 (cf. p. 158): definability of ⪯ from ∼.

• Finite model T.
Consider the 2-element model with ⪯= {(⊥,⊥), (⊥,⊤), (⊤,⊤)} (see Fig. 6:
Finite model T, p. 165).

• Sine model H.
We can also define a model using a semicircle and sine of angle. Consider
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On Comparison, Equivalence and Addition of Magnitudes 165

the points on a semicircle with center X and midpoint A; define U ⪯ V iff
sin(AXUÕ) ≤ sin(AXVÔ) (see Fig. 7: Sine model H, p. 165).

Figure 6: Finite model T

⊥ ≺ →→

∼

↗↗ ⊤

∼

↗↗

Figure 7: Sine model H

X · A

B

C

Lemma A.2 (Model T). In model T (of Fig. 6, p. 165), the basic properties for ∼ and
⪯ hold, and the function interchanging ⊥ and ⊤ is a bijection of {⊥,⊤} that preserves
∼ but not ⪯.

Proof. See Figs. 6 (Finite model T) and 8 (Interchange in model T, p. 166).

Thus, comparison ⪯ is not definable from equivalence ∼.

Proposition 2.3 (⪯ not definable from ∼) Comparison ⪯ is not definable from equiv-
alence ∼.

Proof. By Lemma A.2: Model T, p. 165.
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Figure 8: Interchange in model T

⊥

∼
↓↓

↘↘

⊤

↙↙

∼
↓↓

⊥

∼

↗↗ ⊤

∼

↗↗

⊥

↘↘

≺ →→ ⊤

↙↙
⊥ ⊤

A.2. Comparison and Simple Addition: details

We now provide details about comparison and simple addition (cf. Sct. 3). We first
examine counter-models for definability: ; versus ⪯.

Counter-model for Question 3.1 (cf. Sct. 3, p. 161): definability of ; from ⪯.

Model P: with universe Q1 (the rationals above 1), q ⪯ r iff q ≤ r and
q ; r := q · r (product) (cf. Lemma 3.2: Models for ;, pp. 160).

Lemma A.3 (Model P). In the rational model P (cf. p. 166), the basic properties for
⪯ and ; hold, and the function db assigning each q ∈Q1 to its double 2 · q is a bijection
of Q1 that preserves ⪯ but does not preserve ;.

Proof. We have q ≤ r iff 2 ·q ≤ 2 · r, and db(1 ·1) = 2 whereas db(1) ·db(1) = 4 (see
also Fig. 9: Double in P, p. 166).

Figure 9: Double in P

q
db

↙↙

⪯ →→ r
db

↘↘
2 · q ⪯ →→ 2 · r

(1, 1)

db
↓↓

db
↓↓

; →→ 1
db

↘↘(2, 2) ;
→→ 4 ̸= 2

Thus, simple addition ; is not definable from comparison ⪯.

Proposition 3.1 (; not definable from ⪯) Simple addition ; is not definable from com-
parison ⪯.
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Proof. By Lemma A.3: Model P, p. 166.

Counter-model for Question 3.2 (cf. 3, p. 161): definability of ⪯ from ;.

Model S: consisting of the 2 signs − and +, with a ;b := + (constant) and
⪯ := {(−,−), (−,+), (+,+)} (see Fig. 10: Sign model S, p. 167).

Figure 10: Sign model S

−

∼
↘↘ ≺ →→ +

∼
↘↘

a ;b := + (constant)

The following results give some properties of sign model S.

Remark A.2 (Comparison in S). The basic properties (Rf[⪯]), (Tr[⪯]) and (Tt[⪯])
of comparison ⪯ hold in model S. (See Fig. 10: Sign model S, p. 167.)

Remark A.3 (Trivial in S). Signs − and + are trivial in S.16

Lemma A.4 (Non-trivial cancellation in S). Non-trivial ⪯-cancellation (Cn) holds in
sign model S.

Proof. By Remark A.3 (Trivial in S, p. 167): Trv = {−,+}.

Lemma A.5 (Domination in S). Domination (Dm) holds in sign model I.

Proof. By definition of model I (cf. p. 167): a;b := + and a⪯ +⪰ b.

Lemma A.6 (Monotonicity in S). Monotonicity (Mn) holds in model S.

Proof. By definition of ; in S (cf. p. 167) and Remark A.2 (Comparison in S, p. 167):
given a, b, c and d, we always have a;b = + = c;d.

Lemma A.7 (Interchange in model S). In model S, the function interchanging − and
+ is a bijection of {−,+} that preserves ; but does not preserve ⪯.

Proof. We have a;b = +; but − ⪯ + , whereas + ̸⪯− (see also Fig. 11: Sign inter-
change in S, p. 168).

Corollary A.1 (Model S). In model S (cf. p. 167), the basic properties for ⪯ and ;
hold, and the function interchanging − and + is a bijection of {−,+} that preserves ;
but does not preserve ⪯.
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Figure 11: Sign interchange in S

−

∼
↘↘

→→

≺ →→ +

←←

∼
↘↘

− +

Proof. By Remark A.2 (Comparison in S, p. 167), and Lemmas A.4 (Non-trivial can-
cellation in S, p. 167), A.5 (Domination in S, p. 167), A.6 (Monotonicity in S,
p. 167) and A.7 (Interchange in model S, p. 167).

Thus, comparison ⪯ is not definable from simple addition ;.

Proposition 3.2 (⪯ not definable from ;) Comparison ⪯ is not definable from simple
addition ;.

Proof. By Corollary A.1: Model S, p. 167.

We now consider models for Question 3.3 (cf. 3, p. 161): independence of each
basic property ; given those of ⪯. We first examine counter-models for domination
(Dm) and for non-trivial cancellations (Cn). The 2 models below use numbers with
a ⪯ b iff a ≤ b.17

(̸Dm) Model A non-negative rationals Q0 a ;b :=
a+ b

2
.

(̸Cn) Model M naturals N a ;b := Max{a,b}+ 1.

The following results give some properties of model A (cf. p. 168).

Lemma A.8 (Monotonicity in A). Monotonicity (Mn) holds in model A.

Proof. Monotonicity (Mn) holds because ; is an average.18

Remark A.4 (Trivial in A). Every q ∈Q0 is trivial in A.19

Lemma A.9 (Non-trivial cancellation in A). Non-trivial ⪯-cancellation (Cn) holds in
model A.

Proof. By Remark A.4 (Trivial in A, p. 168): Trv=Q0.

Lemma A.10 (Domination in A). Domination (Dm) does not hold in model A.
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Proof. Domination (Dm) fails because ; is an average.20

Corollary A.2 (Model A). In model A (cf. p. 168), the basic properties of ⪯ and the
;-properties (Mn) and (Cn) hold, but domination (Dm) fails.

Proof. By Lemmas A.8 Monotonicity in A, p. 168), A.9 (Non-trivial cancellation in A,
p. 168) and A.10 (Domination in A, p. 168).

The following results give some properties of model M (cf. p. 168).

Remark A.5 (Addition ; in M). For all a,b ∈ N: a< Max{a,b}> b.21

Lemma A.11 (Domination in M). Domination (Dm) holds in model M.

Proof. By Remark A.5: Addition ; in M, p. 169.

Lemma A.12 (Monotonicity in M). Monotonicity (Mn) holds in model M.

Proof. By totality (Tt[⪯]) (cf. Lemma 3.2: Models for ;, pp. 160).22

Remark A.6 (Trivial in M). Every natural n ∈ N is proper in M.23

Lemma A.13 (Non-trivial cancellation in M). Non-trivial ⪯-cancellations (Cn) do not
hold in model E.

Proof. Cancellations fail because ; loses information.24

Corollary A.3 (Model M). In model M (cf. p. 168), the basic properties of ⪯ and the
;-properties (Mn) and (Dm) hold, but cancellations (Cn) fail.

Proof. By Lemmas A.11 Domination in M, p. 169), A.12 Monotonicity in M, p. 169)
and A.13 (Non-trivial cancellation in M, p. 169).

We now examine a model for the independence of ;-monotonicity. Our model is
based on the extended naturalsN: the usual naturals with a negative zero 0 preceding
them (see Fig. 12: Extended naturals N, p. 169.)

Figure 12: Extended naturals N

0

∼
↘↘ ≺ →→ 0

∼
↘↘ ≺ →→ 1

∼
↘↘ ≺ →→ . . . ≺ →→ n

∼
↘↘ ≺ →→ n+ 1

∼
↘↘ ≺ →→ . . .

⏞ ⏟⏟ ⏞

N
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Table 5: Functions | | and ζ in model E

|n| :=

�

0 if n = 0
n if n ∈ N

ζ(n) :=

�

0 if n = 0
1 if n ̸= 0

Model E: the extended naturals N, with a ;b := |a|+ |b|+ζ(a), where func-
tions | | and ζ are given in Tab. 5, p. 170.

The following results give some properties of model E (cf. p. 169).

Remark A.7 (Comparison in E). The basic properties (Rf[⪯]), (Tr[⪯]) and (Tt[⪯])
of comparison ⪯ hold in model E. (See Fig. 12: Extended naturals N, p. 169.)

Remark A.8 (Function | | in E). For every n ∈ N: |n| ⪰ n.25

Remark A.9 (Trivial 0 in E). Natural 0 ∈ N is trivial in E.26

Remark A.10 (Monotonicity in E). Monotonicity (Mn) fails in model E: take a= 0 and
b= c= d= 0.27

Lemma A.14 (Domination in E). Domination (Dm) holds in model E.

Proof. By Remark A.8 (Function | | in E, p. 170).28

Lemma A.15 (Non-trivial cancellation in E). Non-trivial ⪯-cancellations (Cn) hold in
model E.

Proof. By Remark A.9 (Trivial 0 in E, p. 170).29

Corollary A.4 (Model E). In model E (cf. p. 169), the basic properties of comparison
⪯, ;-domination (Dm) and non-trivial⪯-cancellations (Cn) hold, but ;-monotonicity (Mn)
fails.

Proof. By Remarks A.7 (Comparison in E, p. 170) and A.9 (Trivial 0 in E, p. 170),
and Lemmas A.14 Domination in E, p. 170) and A.15 (Non-trivial cancellation in E,
p. 170).

Proposition 3.3 (Simple addition ; independence given ⪯) Each basic property of
simple addition ; is independent from the others in the presence of the basic properties
(Rf[⪯]), (Tr[⪯]) and (Tt[⪯]) of comparison ⪯.

Proof. By Corollaries A.2 (Model A, p. 169), A.3 Model M, p. 169) and A.4 (Model
E, p. 170).
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Notes

1 For historical and philosophical discussions on the standard theory of magnitude see
Stein (1990), Hale (2000) and Erhlich (2006). Technical expositions can be found in Clifford
(1958) and Satyanarayana (1979).

2 Totality (or linearity) means that any two elements of the given set are comparable.
3 It is often stressed that the fact that addition satisfies monotonicity means that the or-

dering is compatible with the structure of a semigroup.
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4 For a historical appraisal of this work, and its relation to Tarski contributions to this
subject, see McFarland, McFarland and Smith (2016).

5 The geometrical theory of equivalence investigates criteria for the equality of area of
polygonal figures on the basis of its decomposition and composition in polygonal components
respectively congruent. For a classical axiomatic presentation of this theory see Hilbert (1971,
chapter 4). A modern presentation can be found in Hadwiger (1957).

6 De Zolt’s principle was originally formulated by the Italian mathematician Antonio de
Zolt (1847–1926) in 1881.

71. Given a ∼ b, (Sm[∼]) yields b ∼ a, whence (∼⇒⪯) yields b ⪯ a. 2. (⇒) Given a ∼ b,
(∼⇒⪯) yields a ⪯ b, and 1. yields b ⪯ a. (⇐) Given a ⪯ b & b ⪯ a, (⪯⇒∼) yields a ∼ b.

8We always have t;b ⪰ b and a;t ⪰ a. So, t;b ⪯ b iff t;b ∼ b and a;t ⪯ a iff a;t ∼ a.
9For instance: if c;b ∼ b and c∼ d, then d;b ∼ c;b ∼ b.

10One may regard sides ϵ and η as “infinitesimals”, much as points with respect to lines
(cf. Fig. 2: Concatenations with single-point straight lines, p. 158).

11We also have “geometrical” models with segments and length: a ⪯ b iff lg(a) ≤ lg(b)
and a ;b as the concatenation “a followed by b” (with lg(a ;b) = lg(a) + lg(b)).

12(R0): (Dm) a ≤ a+ b ≥ b (as a,b ≥ 0); (Mn) a ≤ c&b ≤ d ⇒ a + b ≤ c + b ≤ c + d;
(Cn) a+b = a+c ⇒ b = c & a+c = b+c ⇒ a = b. (R1): (Dm) a ≤ a ·b ≥ b (as a,b≥ 1);
(Cn) a ≤ c&b ≤ d ⇒ a · b ≤ c · b ≤ c · d; (Cn) a · b ≤ a · c ⇒ b ≤ c (as a > 0) &
a · c ≤ b · c ⇒ a ≤ b (as c> 0) .

13Given a ∼ c and b ∼ d, we have a ⪯ c, c ⪯ a, b ⪯ d and d ⪯ b, thus (Dm) gives
a ;b ⪯ c ;d and c ;d ⪯ a ;b, whence a ;b ∼ c ;d. Given a ;b ;d ⪯ a ;c ;d, left cancellation
gives b ;d ⪯ c ;d, whence right cancellation gives b ⪯ c. ∼-cancellation follows from ⪯-
cancellation.

14We also have a 2-element model with ⪯= {(b,b), (c,c)}.
15Complex numbers 1+ 0 · i and 0+ 1 · i are incomparable.
16Indeed: −;+ = + and +;+ = +.
17So, the basic properties of ⪯ hold in them (cf. Lemma 3.2: Models for ;, pp. 160).

18If a ≤ c and b ≤ d, then a;b =
a+ b

2
≤

c+ d
2
= c;d.

19By Lemma 3.1 (Trivial, pp. 159); indeed:
q+ q

2
= q.

20Indeed: with a = 1 and b = 0. we have a;b = 1/2 ̸≥ 1 = a, and, with a = 0 and b = 1,
we have a;b= 1/2 ̸≥ 1= b.

21By definition of ; in M (cf. p. 168): a ;b := Max{a,b}+1> Max{a,b} and a≤ Max{a,b} ≥ b.
22Given a≤ c and b≤ d, we have 2 cases. (≤) If a≤ b, then a;b= b+1≤ d+1≤ c;d. (≥)

If a≥ b, then a;b= a+ 1≤ c+ 1≤ c;d.
23By Remark A.5: Addition ; in M, p. 169: m< Max{m, n}> n.
24With a= b= 1 and c= 0, we have a;b = 2 = a;c and a;c = 2 = b;c, but b= 1 ̸⪯0= c

and a= 1 ̸⪯0= c.
25Indeed: for 0, |0|= 0⪰ 0, and, for n ∈ N, |n|= n⪰ n.
26Indeed: 0 ; 0 = |0|+ |0|+ ζ(0) = 0+ 0+ 0 = 0.
27We have: a ⪯ c and b ⪯ b, but a;b ̸⪯c ;d, since c ;d = 0 ;0 = 0 (cf. Remark A.9: Trivial

0 in E, p. 170) and a ;b = 0 ;0 = |0|+ |0|+ ζ(0) = 0+ 0+ 1 = 1.
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28We have: a ;b = |a|+ |b|+ ζ(a) ⪰ |a|+ |b| (as ζ(a)≥ 0), |a|+ |b| ⪰ |a| (as |b| ≥ 0) and
|a| ⪰ a; thus a ;b ⪰ a. Similarly: a ;b ⪰ b.

29(←) If b = 0, then b ⪯ c, so consider b ̸= 0. If b,c ̸∈ Trv, then b ̸= 0 and c ̸= 0. . Given
|a|+ |b|+ζ(a) ≤ |a|+ |c|+ζ(a), we have |b| ≤ |c|, so (as b ̸= 0), b = |b| ≤ |c|, thus b ⪯ |c|.
Now, if c ̸= 0, then |c|= c, whence b ⪯ |c| = c. If c= 0, then |c|= |0|= 0, thus b ⪯ |c| = 0,
yielding b ∈ {0, 0}, which contradicts the assumptions. (→) If a = 0, then a ⪯ b, so consider
a ̸= 0. If a,b ̸∈ Trv, then a ̸= 0 and b ̸= 0, so ζ(a) = 1 = ζ(b), so (as a ̸= 0), a = |a| ≤ |b|,
thus a ⪯ |b|. Now, if b ̸= 0, then |b| = b, whence a ⪯ |b| = b. If b = 0, then |b| = |0| = 0,
thus a ⪯ |b| = 0, yielding a ∈ {0, 0}, which contradicts the assumptions.

Acknowledgments

Previous versions of this paper have been presented at the XXII Cóloquio Conesul de Filosofía
das Ciências Formais in Santa Maria (Brazil) and at the Workshop on the Theory of Magni-
tudes: Historical and Philosophical Perspectives, held at the Pontifical Catholic University of
Rio de Janeiro (Brazil). We would like to thank the audience of these events for their helpful
comments. Moreover, we are especially grateful to Edward Hermann Haeusler, Marco Panza,
Luiz Carlos Pereira, Wagner de Campos Sanz and Frank Thomas Sautter for their insightful
remarks and suggestions, which helped us to clarify many central ideas in this work. Finally,
we are indebted to two anonymous referees of Principia, whose comments have significantly
improved this paper.

PRINCIPIA 23(2): 153–173 (2019)


	Introduction
	Comparison and Equivalence
	Comparison and Addition: simplified approach
	Conclusion
	Some Details
	Comparison and Equivalence: details
	Comparison and Simple Addition: details


