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Abstract. In order to measure the degree of dissimilarity between elements of a Boolean
algebra, the author’s (1984) proposed to use pseudometrics satisfying generalizations of
the usual axioms for identity. The proposal is extended, as far as is feasible, from Boolean
algebras (algebras of propositions) to Brouwerian algebras (algebras of deductive theories).
The relation between Boolean and Brouwerian geometries of logic turns out to resemble in a
curious way the relation between Euclidean and non-Euclidean geometries of physical space.
The paper ends with a brief consideration of the problem of the metrization of the algebra
of theories.
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0. Background

In (1984) I proposed an axiom system A for a function d on a poset L that in a
rather straightforward manner generalizes and strengthens the usual elementary
axioms for identity. The value of d(a, c) can be understood as one way, by no means
the only one, of grading the degree of dissimilarity or diversity of the elements a
and c of L. The function d is not required to be real-valued, but that is its most
natural interpretation, in which case, as is easily demonstrated, it satisfies the usual
requirements of a pseudometric operation. The system A was applied to an arbitrary
Boolean algebra L, for which it was proved to be equivalent, given some appropriate
definitions, to two other axiomatic systems: B, a different and more familiar set of
axioms for a pseudometric operation d; and C, the standard system of axioms for an
unnormalized measure or positive valuation function µ. As was remarked, the close
relation between the systems B and C in Boolean algebras (in which every strictly
positive unnormalized measure is also a positive isotone valuation) is well known.
The paper also drew attention to a number of variations and generalizations, some
of them first mentioned in Miller (1979). Several of the derivations, for example, but
not all of them, can be carried out when L is assumed not to be a Boolean algebra,
but only a lattice. It was noted that if L is a lattice, the system B, together with the
assumption that the pseudometric d is a metric (that is, d(a, c) = 0 only if a = c),
compels L to be modular (Birkhoff 1967, Theorem X.2). It was observed also that
if one of the axioms in B is strengthened from an inequality to an identity, then L
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is forced to be distributive. The derivations, furthermore, were shown to be valid
when the range of d is not the real line but an arbitrary partially ordered abelian
semigroup with unit and some weak cancellation properties.

The Boolean operation 4 of symmetric difference plays an important role in many
of the derivations in the systems A and B, and in the definition in the system C of
the pseudometric d in terms of the measure µ. Yet no thought was given in (1984)
to whether similar results could be obtained for Brouwerian (dual-intuitionistic) al-
gebras, where too the symmetric difference operation is defined and is known to
possess pseudometric properties (Nordhaus & Lapidus 1954, Miller 1978, § 3). This
was a conspicuous omission. The algebra of deductive theories of a language in-
corporating classical logic, whose Lindenbaum–Tarski algebra is Boolean, is known
to be Brouwerian in general (provided that, as in the Lindenbaum–Tarski algebra,
X� Z means that X is logically stronger than Z and not, as in the original presenta-
tion in Tarski 1935/1936, that X⊆ Z). Since the problem that prompted the original
investigation was to say something enlightening about the idea of the distance of a
theory from the truth, or its distance from another theory (Miller 1977, 1978), it is
plainly of interest to develop further the Brouwerian case.

Another matter that needs to be addressed is the question of the existence of a
metric d and of a strictly positive measure µ. Pseudometrics satisfying the systems
A and B abound, as do measures satisfying the system C. We certainly need to be
more specific. But as recorded in Miller (1986), p. 174, these two goals are not
easily attainable together. Unless the Brouwerian algebra L is Boolean, there exists
no metric d obeying the axiom system A, even if L is finite.

In this paper the axiom systems A and C will be replaced by systems A? and C?

that overcome the main difficulties sketched. A? and C? will be shown to be logically
equivalent in Boolean algebras to A and C respectively (and therefore to B), and to
be logically equivalent in Brouwerian algebras to each other. The system B will be
shown to be equivalent in Boolean algebras to a somewhat more transparent system
B\, which in its turn can be modified to a system B\? that is appropriate to Brouw-
erian algebras. We shall note that there exists another way of providing axioms
for pseudometric operations in Brouwerian algebras, which abandons the system A
and retains the system B without modification (and makes a trifling change to the
system C here presented). Results obtained by Mormann (2006) under this alter-
native approach will be adapted to show that every Brouwerian algebra of theories
(of a denumerable language) can be metrized by a metric that complies with the
characteristic axiom (A?1) of the system A?.
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1. Three Axiom Systems

The letters a, b, c are used as variables for the elements of an arbitrary lattice L
with ordering �. The join and meet operations of L are represented by + and ·
respectively, and the unit and zero elements (if these elements exist) by > and ⊥
respectively. The symbols + and = are used also for operations in some partially
ordered semigroup with unit, the non-negative real numbers unless otherwise stated,
which is the space of values for two functions d and µ defined on L. There should
not be any danger of confusion between the different uses of these symbols.

We first present the three axiom systems A, B, C already mentioned. The axioms
of A are:

µ(b) =Df d(b,⊥)(A0)

d(a, c) + d(ϕa, b) ≥ d(ϕc, b)(A1)

a � b � c ⇒ d(a, c) = d(a, b) + d(b, c),(A2)

where in (A1), which is a scheme of axioms, the term ϕc is identical with the term
ϕa except perhaps for containing c at one or more places at which ϕa contains a.
The axioms of B are:

µ(b) =Df d(b,⊥)(B0)

d(b, a) + d(b, c) ≥ d(a, c)(B1)

d(a, c) ≥ d(b+ a, b+ c) + d(b · a, b · c).(B2)

This system of axioms (B1 is just the triangle inequality) derives from Theorem 1
of Chapter X of Birkhoff (1967). Note that the definition (B0) of µ in terms of d
is identical with (A0). C is a familiar system of axioms for a measure µ. The term
a 4 c in the definition (C0) of d in terms of µ is the Boolean symmetric difference
(exclusive disjunction) a · c′+ c · a′ of a and c.

d(a, c) =Df µ(a 4 c)(C0)

µ(⊥) = 0(C1)

µ(b) ≥ 0(C2)

µ(a) +µ(c) = µ(a+ c) +µ(a · c).(C3)

If the lattice L is a Boolean algebra, the systems A, B, and C are logically equiv-
alent (Miller 1984). In § 3 we shall add a fourth equivalent system B\, like B but
somewhat more transparent.
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2. Degrees of Diversity

The axiom systems B and C need no immediate discussion, but something must be
said about A. In elementary logic the relation of identity or equality is standardly
introduced by the axioms

b = b(E0)

a = c ∧Φa ⇒ Φc,(E1)

where Φa is a formula perhaps involving a, and Φc is like Φa except perhaps for
containing c free at one or more places where Φa contains a free. If we write O for
the falsum or absurdity (of the metalanguage), and ⇐ for the converse of ⇒ (⇐ is
to be read if and⇒ is to be read if . . . then), then we may accordingly characterize
also the relation 6= of diversity by the axioms

b 6= b ⇔ O(E2)

a 6= c ∨¬Φa ⇐ ¬Φc.(E3)

In the case of algebraic languages, in which all atomic formulas are identities, the
second principle (E3), the principle of the diversity of discernibles, may be rendered
in one of the forms

a 6= c ∨ϕa 6=ψa ⇐ ϕc 6=ψc,(E4)

a 6= c ∨ϕa 6= b ⇐ ϕc 6= b,(E5)

where ϕa and ψa are terms perhaps involving a and the conventions on substitu-
tion are as before. In general these statements are not logically equivalent; (E5) is
weaker than (E4). A theory of the partial diversity or degree of dissimilarity of two
elements of an algebra may be obtained by generalizing these axioms (E0) and (E4)
in terms of a (typically real-valued) function d satisfying

d(b, b) = 0(E6)

d(a, c) + d(ϕa,ψa) ≥ d(ϕc,ψc).(E7)

In Boolean algebras, the scheme (E7) is equivalent to the restricted version called
(A1) above:

d(a, c) + d(ϕa, b) ≥ d(ϕc, b).(E8)

When the axiom (E6) and the scheme (E7) are augmented by the obvious definition
of identity,

a = c =Df d(a, c) = 0,(E9)
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they yield a set of axioms for degrees of dissimilarity or diversity. In the bulk of this
paper the westward half of (E9) is not assumed, and it is only in § 6 that metrics
come to the fore.

Consider first a degenerate algebra, with no operations. As a is the only term
that involves a,

d(a, c) + d(a, a) ≥ d(c, a),(E10)

d(a, c) = d(c, a),(E11)

d(a, c) + d(a, b) ≥ d(c, b),(E12)

E7
E6,E10

E7

are all we can extract from (E6) and (E7). In other words, d is a pseudometric
operation. If (E9) holds too, then d is a metric operation. If d is defined on an
algebra L that contains operations, a strong condition of uniform continuity (E14),
the Lipschitz condition, is satisfied:

d(a, c) + d(ϕa,ϕa) ≥ d(ϕc,ϕa)(E13)

d(a, c) ≥ d(ϕa,ϕc)(E14)

d(a, c) ≥ d(b, b) = 0(E15)

E7
E6,E11,E13

E6,E14

Inequality (E14), although weaker than (E7), is easier to work with than either (E7)
or (E8). It follows from (E8) alone, and not until step (A5) below is the full strength
of (E7) needed. Note also that from (E14) and the triangle inequality (E12) we can
derive (E8), but not (E7).

The next results invoke the assumption that the algebra L is a lattice with join +
and meet ·.

d(a, c) ≥ d(b+ a, b+ c)(E16)

d(a, c) ≥ d(a · b, c · b)(E17)

d(c, a · c) ≥ d(a+ c, a+ a·c)(E18)

d(c, a · c) ≥ d(a+ c, a)(E19)

d(a+ c, a) ≥ d((a+ c)·c, a · c)(E20)

d(a+ c, a) ≥ d(c, a · c)(E21)

d(a+ c, a) = d(c, a · c)(E22)

E14

E14

E16

E18

E17

E20

E19,E21

The lattice quadrangles are parallelograms. The isotony principles (E23) and (E24)
follow easily.

a � b � c ⇒ d(a, c)≥ d(a, b)(E23)

a � b � c ⇒ d(a, c)≥ d(b, c).(E24)

E16

E17
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3. Radial Convexity

The metric part of the axiomatic system A presented in § 1 above is obtained by
adding to the scheme (A1), which was labelled (E8) in § 2, the following principle
of additivity along chains:

a � b � c ⇒ d(a, c) = d(a, b) + d(b, c).(A2)

Since all the metrical formulas (E6)–(E24) of § 2 hold for the trivial metric (whose
value is 0 when a = c and 1 when a 6= c), (A2) is an independent assumption.
Mormann (2006), definition 2.6, calls those (pseudo)metric operations d for which
(A2) holds radially convex (pseudo)metrics.

In Miller (1984) there is a short proof that, if L is a Boolean algebra, the scheme
(A1) and the axiom (A2) imply that the lattice quadrilaterals are rectangles (see
§ 1, lines 14–21). It is shown also that this result, which is proved in formula (A8)
below, is not forthcoming for arbitrary lattices, even Boolean lattices. Yet the re-
sult is demonstrable for all lattices once the scheme (A1), formerly called (E8), is
strengthened to (E7), which we here formally relabel:

d(a, c) + d(ϕa,ψa) ≥ d(ϕc,ψc).(A?1)

Since these two schemes (A1) and (A?1) are logically equivalent in Boolean algebras
(Miller op.cit., formula 23), and it is (A?1) that we shall eventually want to adopt
for other algebras, we shall work in this section in the axiomatic system A+ whose
metrical postulates are (A?1) and (A2) (the definitional axiom (A0) will not be
needed). Our purpose is to show how Birkhoff’s complicated axiom (B2) may be
simplified, whatever the lattice; in the presence of (B1), it obviously implies radial
convexity (A2), but it is itself a consequence of (A2) and rectangularity.
(E22) states that the opposite sides of a typical lattice quadrilateral are of equal

length. We show now, within the system A+, that the diagonals of the quadrilateral
also are of equal length.

d(b, b) + d(b, b) = d(b, b)(A3)

d(b, b) = 0(A4)

d(a, c) + d(a+ a, a · a) ≥ d(a+ c, a · c)(A5)

d(a+ c, a · c) + d(a+ c+ a, a+ c+ c) ≥ d(a · c+ a, a · c+ c)(A6)

d(a+ c, a · c) ≥ d(a, c)(A7)

d(a, c) = d(a+ c, a · c).(A8)

A2

A3

A?1
A?1
A6

A4,A5,A7
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Figure 0: A diagrammatic demonstration that (B2) follows from radial convexity
plus the rectangularity of the lattice quadrilaterals.

We are now able to give a proof of Birkhoff’s axiom (B2) within the system A+,
and further to show that, if the lattice L is distributive, then the inequality in (B2)
is turned into an identity:

d(a, c) = d(b+ a, b+ c) + d(b · a, b · c).(A9)

By (A8), d(a, c) = d(a+ c, a · c). Figure 0 shows that if to the two ends of the interval
[a+ c, a · c] the intervals [b+ a+ c, a+ c] and [a · c, b · a · c] are added, we obtain a
path through the lattice with length, by radial convexity (A2), equal to

d(b+ a+ c, (b+ a) · (b+ c)) + d((b+ a) · (b+ c), b+ a · c)+
+d(b+ a · c, b) + d(b, b · (a+ c))+

+d(b · (a+ c), b · a+ b · c) + d(b · a+ b · c, b · a · c).

The two middle terms here are, by (E22), equal in length to the two added inter-
vals, while the two outer terms are, by (A8), equal in length to d(b+ a, b+ c) and
d(b · a, b · c). The other two terms are non-negative, and if L is distributive, zero.

Birkhoff’s axiom (B2) is therefore derivable from the formulas (A2), (E22), and
(A8). It is clear that (B2) is satisfied by any function d that has a constant negative
value (say, −1), and hence it cannot ensure the triangular inequality, which above

Principia 13(3): 339–56 (2009).



346 David Miller

was called (B1), or even d(b, b) = 0, which was called (E6). Since (E6) follows from
(A2), we have to assume more than (B2) if we are to prove (A2). We shall show that
the three formulas (A2), (E22), and (A8) are all derivable from (B2) together with
(B1); that is, that they are theorems of the system B. The following lines correct an
error in the derivation on lines 0–15 and 26–31 of § 2 of Miller (1984).

d(b, a) + d(b, c) ≥ d(a, c)(B1)

d(a, c) ≥ d(b+ a, b+ c) + d(b · a, b · c)(B2)

a � b � c ⇒ d(a, c) ≥ d(a, b) + d(b, c)(B3)

d(b, b) + d(b, b) = d(b, b)(B4)

d(b, b) = 0(B5)

d(b, a) = d(a, b)(B6)

a � b � c ⇒ d(a, c) = d(a, b) + d(b, c)(B7)

d(b, a) ≥ 0(B8)

d(a, c) ≥ d(b · a, b · c)(B9)

d(a+ c, a) ≥ d(c · (a+ c), c · a)(B10)

d(a, c) ≥ d(b+ a, b+ c)(B11)

d(c, a · c) ≥ d(a+ c, a+ a · c)(B12)

d(a+ c, a) = d(c, a · c)(B13)

d(a, c) ≥ d(a+ a, a+ c) + d(a · a, a · c)(B14)

d(a, c) ≥ d(a+ c, a · c)(B15)

d(a+ c, a · c) ≥ d((a · c) + a, (a · c) + c) +(B16)

+ d((a · c) · a), (a · c) · c)
d(a, c) = d(a+ c, a · c)(B17)

B2
B1,B2
B4

B1,B5
B1,B3,B6
B1,B5
B2,B8
B9

B2,B8
B11

B10,B12
B2

B1,B14

B2
B5,B15,B16

The formulas to be proved, (A2), (E22), and (A8), are at lines (B7), (B13), and
(B17), respectively.

These results encourage the recognition of a fourth axiom system B\, a notable
simplification of the system B, and equivalent to each of A, B, and C in Boolean
algebras. B\ has five axioms, the definition (B\0), and the principles of triangularity
(B\1), translation invariance (B\2), torsion invariance (B\3), and radial convexity
(B\4):

µ(b) =Df d(b,⊥)(B\0)

d(b, a) + d(b, c) ≥ d(a, c)(B\1)

d(a+ c, a) = d(c, a · c)(B\2)
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d(a, c) = d(a+ c, a · c)(B\3)

a � b � c ⇒ d(a, c) = d(a, b) + d(b, c).(B\4)

4. Brouwerian Algebras

Although, as we have seen, a good number of the derivations succeed in all lat-
tices, the investigation in Miller (1984) was carried out, for the most part, under
the hypothesis that the lattice L is a Boolean algebra. For the rest of the paper we
shall loosen this hypothesis, and assume only that the lattice on which d is defined
is a Brouwerian algebra; that is to say, L is a lattice with unit > in which for ev-
ery two elements a, c there exists a smallest element b such that b + c � a. This
element, written a − c, is called the remainder or difference when c is subtracted
from a. Brouwerian algebras are dual to Heyting algebras, the algebras correspond-
ing to intuitionistic logic (in which for every two elements a, c there is a largest
element b, the conditional a → c, such that b · a � c). Brouwerian algebras, like
Heyting algebras, are invariably distributive, and all finite distributive lattices, in
particular finite chains, are Brouwerian algebras. Just as in a Heyting algebra each
element b has a pseudocomplement b → ⊥ that obeys the law of non-contradiction
b · (b→⊥) = ⊥, so in a Brouwerian algebra each element b has an authentic com-
plement >−b that obeys the law of excluded middle b+(>−b) =>; it will be called
the authocomplement of b, and written b ′. The symmetric difference of a and c, which
is defined by

a 4 c =Df (a− c) + (c− a),(D0)

will continue to play a crucial role in what we do. It must not be forgotten that
in Brouwerian algebras neither of the Boolean identities a − c = a · c′ and a 4 c =
a · c′+ c · a′ is generally valid.

Because of the relative unfamiliarity of the laws of the non-Boolean remainder
and symmetric difference (D0), we list below without proof the main ones appealed
to in the rest of the paper. They are duals of perhaps more homely laws of the intu-
itionistic conditional and biconditional. Because of its importance, attention should
be drawn to the law (D10), in which χc is a term like χa except for containing c
at one or more places where χa contains a. This is the dual of the intuitionistic
law of replacement: p ↔ r ` Xp ↔ Xr, where Xp is a formula that contains free
the variable p and Xr is the result of replacing one or more instances of p by the
variable r.

a− c = (a+ c)− c(D1)

a− c = a− a · c(D2)
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(a− c) · c = (a− c) · (a · c)(D3)

a 4 c = (a+ c) 4 (a · c)(D4)

a+ c = (a 4 c) + a · c(D5)

a 4 c ≥ (a 4 b) + (b 4 c)(D6)

a � b � c ⇒ a 4 c = (a 4 b) + (b 4 c)(D7)

a � c ⇔ (a 4 c) + c = a(D8)

a � c⇒ a 4 c = a− c(D9)

a 4 c � χa 4 χc(D10)

>′ = ⊥(D11)

(b · b ′)′ = >(D12)

b− b = ⊥(D13)

b−⊥ = b(D14)

b 4⊥ = b(D15)

b 4 b = ⊥(D16)

u1 µ(1) = 2

ub µ(b) = 1

u0 µ(0) = 0

Figure 1: The three-
element chain

In the deductively more exiguous setting of Brouwerian
algebras the equivalence of A, B, and C breaks down at
a number of points. The most significant difficulty is that
what distinguishes Boolean from non-Boolean Brouwerian
algebras is the presence in the latter of at least one ele-
ment b for which the law of non-contradiction b · b ′ = ⊥
fails. But (D12) (b · b ′) ′ = > is universally valid. As
(E11) and (E14) above show, it follows from (A1) that
d(a, c)≥ d(ϕc,ϕa), and therefore by (D11) that d(>, b · b ′)
≥ d((b · b ′)′,>′) = d(>,⊥). By (A2) we may conclude that
d(b · b ′,⊥) = 0. That is to say, on a proper Brouwerian alge-
bra L, as we shall henceforth call a Brouwerian algebra that
is not Boolean, there exists no genuine metric (as opposed to
pseudometric) satisfying the axiom system A. If conformity
withA is required, then the Brouwerian algebra is effectively
booleanized. Yet system B certainly admits a metric d, and
system C admits a measure µ that is positive isotone (and
therefore strictly positive). For the simplest of all proper
Brouwerian algebras, the three-element chain, possible val-
ues of µ are recorded in Figure 1. For each a ≥ c, we may set d(a, c) = µ(a)−µ(c).
In this algebra, with this metric, the authocomplement of b is the unit element 1,
and so b·b′ = b. The axioms of A are therefore transgressed.
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In a Brouwerian algebra, that is, neither B nor C implies A. Nor does A imply
either B or C, though this can be taken care of by strengthening (A1) to the already
familiar generalization,

d(a, c) + d(ϕa,ψa) ≥ d(ϕc,ψc),(A?1)

It may be noted again that this alternative formulation makes no difference in Bool-
ean algebras, where (A1?) follows from (A1) (without the use of A2). Another
shortcoming, which is relatively easily taken care of, is the failure of C to imply B.
To recover for Brouwerian algebra this implication we have to make two reforms;
one is to replace the definition (C0) with the variant

d(a, c) =Df µ(a+ c)−µ(a · c),(C+0)

(Birkhoff op.cit., Theorem X.1), and the other is to add an axiom (to be called (C?4)
below) that states that the measure µ respects the ordering � (that is, µ is iso-
tone). Neither of these changes can be thought of as momentous amendments to the
original system C, since in Boolean algebras (C0) and (C+0) are logically equivalent
given the other axioms (since a ·c and a 4 c are disjoint), and (C?4) is a consequence
of these other axioms (since a · c and a · c′ are disjoint).

It is not difficult to see in what way the definition (C+0) differs from (C0) in
Brouwerian algebras. (D5) (a 4 c)+a · c = a+ c is a theorem of Brouwerian algebra.
By additivity (C3),

µ(a 4 c) +µ(a · c) = µ(a+ c) +µ((a 4 c) · (a · c))(C+1)

µ(a+ c)−µ(a · c) = µ(a 4 c)−µ((a 4 c) · (a · c)).(C+2)

Since (a 4 c) · (a · c) = ⊥ is not a valid identity in Brouwerian algebra, in general
(C+0) and (C0) are distinct ways to define the function d. An explicit axiom of
isotony, such as (C?4), is needed in Brouwerian algebras because axiom (C3) is
vacuous in a chain. In the chain depicted in Figure 1, for example, µ(b) and µ(1)
may be independently assigned any non-negative values.

It is apparent that the kinship in Boolean algebras between distance functions
(and measures) and the more abstract degrees of dissimilarity characterized by the
axiom system A cannot exist in Brouwerian algebras unless these axioms are some-
how weakened. The natural way to proceed is to weaken axiom (A1), even though,
as we have just noted, it has to be strengthened as well. After all, the central prob-
lem arises from the discontinuity within Brouwerian algebras of the operations of
authocomplementation and remainder (Miller 1986); from the fact, already visible
in Figure 1, that adjacent elements (there 1 and b) can have authocomplements
(there 0 and 1) that are not adjacent. This phenomenon seems to be blatantly in
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conflict with the intuitive idea behind (A1), that if a and c are similar then there is
an upper bound to how dissimilar ϕa and ϕc can be. None of this can be denied.
Note however that the three-element chain is quite representative of all finite chains:
if y is the immediate inferior of the unit element 1, then y ′ = 1 and 1′ = 0 are as
widely separated by the lattice ordering � as they can be. In other words, there is
no upper bound in Brouwerian algebras to the number of elements (or equivalently
the number of non-zero intervals), between the authocomplements of adjacent el-
ements; the intuitive distance d(ϕa,ϕc), that is, is generally unconstrained by the
value of d(a, c). In these circumstances the idea of adding a correction term to axiom
(A1) seems distinctly unpromising.

The simplest policy, which is also the most conservative one, therefore seems
to be to abandon the axiom system A altogether, to replace (C0) by (C0+), and to
add the isotony axiom (C?4). It can then be shown, in a standard manner, that the
new system, which we may call C+, is logically equivalent to the system B: that
C+ implies B is the content of Birkhoff op.cit., Theorem X.1, while the proof that B
implies C+ is contained within lines 0–15 and 35–40 of Miller (1984), § 2. (In these
lines nothing more is assumed about L than that it is a lattice. There is an error at
lines 7f., which is implicitly corrected on p. 346 above.) But as announced in § 0,
our purpose here is to preserve the spirit of the system A by introducing a variant
of axiom (A2), and at the same time strengthening (A1) to (A?1). This variation
will enable us to prove the equivalence of the new system A? with the system C?,
which consists of the same axioms as the old system C, together with the isotony
axiom (C?4). What we have to surrender, in order to achieve this, is equivalence
with the system B, since its characteristic axiom (B2) has to be so harshly mutilated
that it no longer qualifies for participation in a respectable axiomatic system. But
fortunately the variant B\ is at hand. If we modify its axiom (B\4), which is identical
with axiom (A2), in an identical way, we obtain a system B\? completely equivalent
with A? and C?.

5. Radial Convexity Refined

The axioms of the new system C? are those of C, augmented with an axiom of
isotony (C?4).

d(a, c) =Df µ(a 4 c)(C?0)

µ(⊥) = 0(C?1)

µ(b) ≥ 0(C?2)

µ(a) +µ(c) = µ(a+ c) +µ(a · c)(C?3)

a � c ⇒ µ(a)≥ µ(c).(C?4)
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The following derivations are conducted within this system C?, together with
some of the laws of Brouwerian algebra listed above. Applying (C?3) and the defi-
nition (C?0) to (D7), we obtain

a � b � c ⇒ µ(a 4 c) = µ(a 4 b) +µ(b 4 c)−µ((a 4 b) · (b 4 c)),(C?5)

a � b � c ⇒ d(a, c) = d(a, b) + d(b, c)−µ((a 4 b) · (b 4 c)).(C?6)

Thanks to the laws (D15) b 4 ⊥ = b and (D9) a � c⇒ a 4 c = a− c, (C?6) may be
rewritten:

a � b � c ⇒ d(a, c) = d(a, b) + d(b, c)− d((a 4 b) · (b 4 c),⊥);(C?7)

a � b � c ⇒ d(a, c) = d(a, b) + d(b, c)− d((a− b) · (b− c),⊥).(C?8)

Since (a − b) · (b − c) = ⊥ is not a Brouwerian theorem, even when a � b � c
(its dual is: if p ` q ` r then ` (r → q)∨ (q→ p), which is intuitionistically invalid,
though classically valid), the final term in (C?8) will be greater than 0 for any metric
d; that is, for any pseudometric that satisfies (E9). In Brouwerian algebras no metric
constrained by C? can be radially convex.

Our proposal — it may seem quite ad hoc — is to modify the system A by re-
placing (A2) with (C?8), which is a Boolean equivalent. This new axiom, unlike
(A2), makes sense only in lattices in which the remainder operation is defined. The
axioms of the revised system A? are:

µ(b) =Df d(b,⊥)(A?0)

d(a, c) + d(ϕa,ψa) ≥ d(ϕc,ψc)(A?1)

a � b � c ⇒ d(a, c) = d(a, b) + d(b, c)−(A?2)

− d((a− b) · (b− c),⊥)
d(b, b) = 0.(A?3)

Note that axiom (A?3) must be stated independently. Without it, d could be any
constant non-zero function. (Thanks to (A?2), and (D13), it suffices to postulate
d(⊥,⊥) = 0.) The abbreviation

κ(a, b, c) =Df d((a− b) · (b− c),⊥)(A?4)

allows (A?2) to be expressed more concisely. The correction term κ(a, b, c) may be
thought of as a measure of the curvature (the deviation from linearity) of chains
from a to c that pass through the point b. Since (> − b) · (b − ⊥) = b ′ · b �
(a−b)·(b−c), the curvature κ(a, b, c) is bounded above by d(b·b ′,⊥), which implies
that κ(a, b, c) = 0 if b has a Boolean complement (that is, if b ·b ′ =⊥). As explained
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in § 0 above, the deductive theories of a language form a Brouwerian algebra, while
according to Tarski (1935/1936), Theorem 17, the axiomatizable deductive theories
are precisely those that conform to the law of non-contradiction. We may therefore
combine the languages of general metamathematics and general relativity to say
(not entirely seriously) that Boolean elements (propositions) possess zero mass, and
only unaxiomatizable theories can engender deflections from straightness. Note,
however, that the converse fails: (a− b) · (b− c) =⊥ does not imply b · b ′ =⊥. For
example, if a = b or b = c, then by (D13) and (A?0), κ(a, b, c) = 0.

In Boolean algebras the systems A? and C? reduce to A and C respectively. We
turn now to the task of proving that in Brouwerian algebras A? and C? are equivalent
to each other, starting with the proof that C? implies A?. It follows at once from
(D15) and (C?0) that (A?0) holds, and from (D16), (C?0), and (C?1) that (A?3)
holds. (A?2) is (C?8). It remains to prove (A?1).

We have seen that (A?0) follows from (C?0) and (D15), and from the three of
them together,

d(a, c) = d(a 4 c,⊥).(C?9)

By appealing to (D7), (C?4), and (A?0) we establish easily the second isotony prin-
ciple (E24),

a � b � c ⇒ d(a, c)≥ d(b, c),(C?10)

and by appealing to (C?0), (C?3), (C?2), (D6), and (C?4), we establish triangularity
as easily,

d(b, a) + d(b, c) = µ(a 4 b) +µ(b 4 c)(C?11)

≥ µ((a 4 b) + (b 4 c) ≥ µ(a 4 c) = d(a, c).

Writing for χ in (D10) the term ϕ 4 ψ, and then applying (C?10), (C?9), and
(C?11), we obtain

d(a 4 c,⊥) ≥ d((ϕa 4ψa) 4 (ϕc 4ψc),⊥),(C?12)

d(a 4 c,⊥) ≥ d(ϕa 4ψa,ϕc 4ψc),(C?13)

d(a 4 c,⊥) + d(ϕa 4ψa,⊥) ≥ d(ϕc 4ψc,⊥).(C?14)

A further three-fold application of (C?9) establishes our old principle of partial di-
versity (A?1):

d(a, c) + d(ϕa,ψa) ≥ d(ϕc,ψc).(C?15)

We turn now to the converse derivation, the derivation of the axioms of C? within
the system A?. Since (A?3) is the same as (E6), and (A?1) is the same as (E7), the
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metrical formulas (E6)–(E24) of § 2 can all be called on for this purpose. Axiom
(C?1) is an immediate consequence of (A?0) and (A?3). Formula (E15) establishes
that d is non-negative, and by (A?0) the same holds for µ, establishing (C?2). It
follows from (E24) that if a � c then d(a,⊥) ≥ d(c,⊥), and hence by (A?0) that
µ(a) ≥ µ(c); that is to say, µ is isotone, as stated in (C?4). For (C?0) and (C?3)
rather more work is needed.

To establish (C?0), we first prove within the system A? that d(a + c, a · c) =
d(a 4 c,⊥). By the Lipschitz condition (E14), d(a 4 c,⊥) ≥ d((a 4 c) + c,⊥+ c),
and so by (D8), if a � c then d(a 4 c,⊥) ≥ d(a, c). By (E14) again, and (D16),
d(a, c) ≥ d(a 4 c, c 4 c) = d(a 4 c,⊥). Since a + c � a · c, these last two results
establish that d((a + c) 4 a · c,⊥) = d(a + c, a · c). By (D4), we conclude that
d(a 4 c,⊥) = d(a+ c, a · c). It was shown in formula (A8) on p. 344 that the equality
of the diagonals of the lattice quadrangles is derivable from (A?1) alone: d(a, c) =
d(a+ c, a · c). It follows that d(a, c) = d(a 4 c,⊥) and, by application of (A?0), the
proof of (C?0) is complete.

In any Brouwerian algebra, by (D1) and (D14), ((a+ c)− c) ·(c−⊥) = (a− c) · c.
By (D2), (D14), and (D3), (a− a · c) · (a · c −⊥) = (a− c) · (a · c) = (a− c) · c. In
other words, by (A?4), κ(a+ c, c,⊥) = κ(a, a · c,⊥). The chain a+ c   c   ⊥ has
the same curvature at c as the chain c  a · c ⊥ has at a · c, and if we apply (A?2)
to each chain, and subtract, the curvature terms cancel out:

d(a+ c,⊥)− d(a,⊥) = d(a+ c, c) + d(c,⊥)− d(a, a · c)− d(a · c,⊥).(A?5)

By (E22), we may infer that d(a+c,⊥)−d(a,⊥) = d(c,⊥)−d(a·c,⊥). The definition
(A?0) may now be applied to each term, with the conclusion (C?3): µ(a) + µ(c) =
µ(a+ c) +µ(a · c).

The modified axiomatic systems A? and C? are thus interderivable. They are
interderivable also with the system B\?, which is obtained from B\ by modifying
(B\4) in the same way as (A2) was modified ((B\?2) is indeed the same formula as
(A?2)). The proofs of B\? from A? and of C? from B\? are minor variations on proofs
that have been given earlier. The details are omitted.

6. Metrization

A measure µ for which the system (C?) holds is called strictly positive whenever
µ(b) = 0 implies that b = ⊥. That is, by (C?0), the pseudometric d is a metric that
obeys (E9). Conversely, if d is a metric, the measure µ defined by (A?0) is positive
isotone. The Brouwerian algebra L can be metrized in accordance with system A? if
and only if it admits a metric that satisfies the axioms of A?; that is, if and only if it
admits a strictly positive measure µ.
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The algebras that concern us, the algebras of theories of a classical logical cal-
culus based on a denumerably infinite language, are all atomic, the atoms being
the maximal theories. These algebras either contain a theory that cannot be finitely
maximized (that is, extended to a maximal theory by adjoining a single proposition),
or contain no such theory. According to a theorem of Mostowski (1937), the alge-
bras in the first class, which are epitomized by any calculus vulnerable to Gödel’s
theorem, have 2ℵ0 atoms, while those in the second class have ℵ0 atoms. For details
of Mostowski’s results, and a relatively elementary proof, see Miller (1992).

Theorem 2.5 of Horn & Tarski (1948) states that an algebra T of theories that has
denumerably many atoms admits a strictly positive measure, and is thus metrizable
in accordance with the system A?. But a theory algebra with 2ℵ0 atoms admits no
such measure, and is not metrizable in accordance with the system A?.

It does not follow that there are algebras of classical theories that are not metriz-
able. In general, metrization demands less than measurability, as the following in-
tuitive remarks may help to make clear. Because distinct theories imply distinct
propositions, of which there are only denumerably all told, every path from > to ⊥
in an algebra of theories has at most ℵ0 links. A radially convex metric therefore
must divide the interval [>,⊥] into at most ℵ0 disjoint pieces. But an algebra with
continuum many atoms is pear-shaped, very much wider at the bottom than it is tall,
and the total available measure on it must be divided into non-denumerably many
non-zero pieces.

Making use of results of Urysohn, Carruth, and Vietoris, Mormann (2006), Theo-
rem 5.4, has demonstrated that each algebra of theories T is metrizable by a radially
convex metric ∂ (a metric satisfying A2). We shall use Mormann’s theorem to show
that each algebra T of theories is metrizable in another way by a metric d that satis-
fies (A?1) and for which, for every a, c ∈ T,

d(a, c) = ∂ (a 4 c,⊥).(A?6)

Since T may not be measurable, we cannot use the definition (A?0) to define a
measure µ in terms of d (or in terms of ∂ either). It follows that (A?2) must fail
for d. The system A? was designed specifically to be interderivable with C?, but the
design must now be partly unstitched.

The correction term κ in (A?2) was calculated (p. 351) by applying (C?3) and
(C?0) to (D7). If we are given a bounded function ν , not a measure, nothing need
stop us from recalculating the correction term to suit a different purpose. Let λ(a, c)
record the extent to which the function ν deviates from additivity, so that

ν(a) + ν(c) = ν(a+ c) + ν(ac) +λ(a, c).(Cλ3)

We can preserve the axiom scheme (A?1) if we replace (A?2) by

a � b � c ⇒ d(a, c) = d(a, b) + d(b, c)−κ(a, b, c)−λ(a− b, b− c).(Aλ2)

Principia 13(3): 339–56 (2009).



A Refined Geometry of Logic 355

If the function λ can be expressed in terms of d, then of course it should be so
expressed. It follows that the theory Cλ, whose axioms are (C?0), (C?1), (C?2),
(Cλ3), implies the theory Aλ, whose axioms are (A?0) (A?1), (Aλ2), and (A?3).
The converse implication does not hold.

Mormann’s proof is non-constructive, and in view of the extraordinary variety
of theory algebras with 2ℵ0 atoms, it is unlikely that much can be said in general
about the metric ∂ . My interest here is only in the values ν(b) = ∂ (b,⊥), which are
all positive and bounded by ∂ (>,⊥). Thanks to (C?0) and (A?6), we can define in
terms of this function ν a metric d that, in almost the same way as before, may be
proved to satisfy the theory Aλ, and in particular axiom (A?1).

THEOREM: Let T be a Brouwerian algebra of theories. If ∂ is a metric on T, then there
exists a metric d on T that satisfies axiom (A?1) and for which d(a, c) = ∂ (a 4 c,⊥)
for each a, c ∈ T.1
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Resumo. A fim de medir o grau de dessemelhança entre elementos de uma álgebra boole-
ana, o autor propôs em (1984) usar pseudométricas satisfazendo generalizações dos axiomas
usuais para a identidade. A proposta é estendida, na medida em que é exequível, de álgebras
booleanas (álgebras de proposições) para álgebras de Brouwer (álgebras de teorias deduti-
vas). A relação entre geometrias booleanas e de Brouwer da lógica resulta semelhante, de
maneira curiosa, à relação entre geometrias euclidianas e não-euclidianas do espaço físico.
O artigo conclui com uma breve consideração do problema da metrização da álgebra de
teorias.

Palavras-chave: Álgebra booleana, álgebra de Brouwer, métrica, mensuração, identidade
parcial.

Notes

1 Some of this material has been presented at the INTERNATIONAL CONFERENCE ON ALGEBRAIC

& TOPOLOGICAL METHODS IN NON-CLASSICAL LOGICS at Tbilisi State University, in 2003, and
at the XIV ENCONTRO BRASILEIRO DE LÓGICA at Itatiaia in 2006; and also at seminars at
the Department of Mathematics, University of Warwick, in 2005, at the Departamento de
Filosofía, Universidad Nacional de Córdoba, Argentina, and the Departamento de Matemáti-
cas, Universidad Nacional de Colombia, Bogotá, in 2006. It is a real pleasure to be able to
dedicate this written version to Newton da Costa on his 80th birthday. In preparing it, I have
been much encouraged by the interest shown by Thomas Mormann in the geometry of logic.
As always, responsibility for errors is reserved.
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