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Abstract. This article explores the metaphor of Science as provider of sharp images of our
environment, using the epistemological framework of Objective Cognitive Constructivism.
These sharp images are conveyed by precise scientific hypotheses that, in turn, are encoded
by mathematical equations. Furthermore, this article describes how such knowledge is pro-
duced by a cyclic and recursive development, perfection and reinforcement process, leading
to the emergence of eigen-solutions characterized by the four essential properties of preci-
sion, stability, separability and composability. Finally, this article discusses the role played
by ontology and metaphysics in the scientific production process, and in which sense the
resulting knowledge can be considered objective.
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You can dance in a hurricane;
But only if you are standing in the eye.

The Eye (2015), by Brandi Carlile

O diabo existe e não existe? Dou o dito. Abrenúncio.
O senhor vê: existe cachoeira; e pois? Mas cachoeira é barranco de
chão, e água se caindo por ele, retombando; o senhor consome essa
água, ou desfaz o barranco, sobra cachoeira alguma?
Solto por si, cidadão, é que não tem diabo nenhum. Nenhum!
O diabo [existe] na rua, no meio do redemunho [redemoinho].

The devil exists and it doesn’t? That is the message; isn’t it?
You see: a waterfall exists, right? But a waterfall is a steep step on
the ground and water falling through it, tumbling down; you either
consume the water or smooth the step, is there still a waterfall left?
Cut loose, just by itself, there is no such thing as a devil; none!
The devil [exists] on the road, at the middle of the whirlwind.

Grande Sertão Veredas (1956), by João Guimarães Rosa
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1. The Sharper Image Metaphor

Figure 1: (top) Blurry vs. Sharper (less aberration) images of star Melnick-34;
(bottom) Resolutions of 5, 10 & 25 pixels/line; Magnification factors of 1x & 2x.

Telescopes work by producing images of distant objects at higher magnification
and better resolution than the observer’s naked eye is capable of. The magnification
factor (see Figure 1, bottom right) specifies how many times larger the observer
sees an object, while resolution (see Figure 1, bottom left) specifies the observer’s
ability to distinguish apart (resolve) two close objects, that is, resolution refers to the
image’s sharpness or amount of fine detail it makes available to the observer. Figure
1 (top) displays three images of the same region of space, centered at Melnick-34
– a distant star in the Tarantula Nebula. These images were produced by: (a) The
ground based telescope of the European Southern Observatory; The Hubble’s wide
field planetary camera, (b) before and (c) after the space shuttle Endeavour 1993
mission to correct a spherical aberration problem. While these images have the same
magnification factor, their resolution range from low(er) to high(er), from left to
right, that is, images to the left are impaired by stronger aberration or distortion
effects that make them more confused, blurry or indistinct, when compared to the
sharper image to the right; Moreover the same images are impaired by the occurrence
of artifacts – spurious effects like pixelation, replications of bright points by dimmer
copies around it, or halo-like effects around larger sources of light.

This article explores the metaphor of Science as provider of “sharp images” of our
environment. As in the telescope example, the images we can possibly see obviously
depend on the instruments we have the ability to build and, perhaps less obviously,
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also depend on the characteristics of our inborn (biological) sense of vision. Simi-
larly, we argue that our ability to interpret and recognize those images is constrained
by our cognitive capabilities, by our theoretical frameworks, etc. Accordingly, such
intellectual abilities are considered essential for our “mind’s eye” in producing and
processing images that usefully represent our environment. In this sense, the episte-
mological framework developed in this article belongs to the philosophical tradition
of cognitive constructivism, as developed by Maturana and Varela (1980), Foerster
(2003), Foerster and Segal (2001), Krohn and Küppers (1990), Zeleny (1980) and
many others.

Nevertheless, the epistemological framework developed in this article has a dis-
tinctly “objective” character that sets it apart from many alternatives in the construc-
tivist tradition. Using our optical analogy once more, the quality of the images pro-
vided by a telescope can be characterized by tailor-made measures used to quantify
magnification, resolution, and specific aberration effects. Similarly, we claim that the
quality of scientific representations can be quantitatively accessed and correctly mea-
sured. Such measures are the technical touch-stones needed to lay down the statis-
tical, mathematical and logical foundations of the Objective Cognitive Constructivism
epistemological framework.

In previous works we define a statistical measure tailor-made for the aforemen-
tioned purpose, namely, ev (H |X ), the e-value, or epistemic value of hypothesis H
given observational data X . The statistical, mathematical and logical properties of
the e-value are perfectly adapted to support and to work in tandem with the Ob-
jective Cognitive Constructivism epistemological framework, as further discussed in
Sections 4 and 7. Nevertheless, this article does not focus on formal analyses of such
mathematical constructs. Rather, its goal is to develop the optical metaphor intro-
duced in this section in order to explain, in an easy and intuitive way, some of the basic
ideas and key insights used in this framework. In accordance with this goal, epistemo-
logical arguments are supported by figures illustrating analogies or providing visual
context. In order to better develop our arguments we use, as historical background,
the science of optics as seen trough the works of Giambattista della Porta (1535-
1615), Galileo Galilei (1564–1642), Johannes Kepler (1571–1630), René Descartes
(1596–1650), and Pierre de Fermat (1607–1665).

2. Galileo’s telescopes and astronomy, della Porta’s natural
magic, and Kepler’s optical theory

In 1610 Galileo Galilei reported the existence of four moons around planet Jupiter,
a surprising announcement since, at that time, standard astronomical knowledge
assumed that planets have no moons. Figure 2 depicts drawings by Galileo show-
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Figure 2: Galileo (1610, p.26–27) reported observation of Jupiter’s moon transit.

ing a fixed star and the four moons he could observe swinging around Jupiter. On
one hand, this discovery should be welcome, for it could have very useful practical
applications. For example, moons’s transit times could be computed and tabulated,
serving as the basis for a clock available worldwide that, in turn, could serve as a
much needed navigation tool used for determining the longitude at a given location,
see Aksnes (2010). On the other hand, the addition of moons to the known plan-
ets was incompatible with the Catholic official doctrine of the time. Hence, it is not
surprising that Galileo’s discovery became the topic of heated debates.

Galileo made his observations using a telescope, a recent Dutch invention that
Galileo perfected and brought to Rome, and Jupiter’s moons could only be observed
with the aid of a such an instrument. Hence, a central topic of those debates: Should
Jupier’s moons, as seen through a telescope, be considered as “real” or legitimate
objects, or should they be dismissed as invalid artifacts or optical illusions?

In a letter written in the same year of 1610 to Johannes Kepler, Galileo bitterly
complains about his critics, as stated in the next quotation, see Santillana (1978,
p.9).

My dear Kepler, what would you say of the learned here, who, replete with
the pertinacity of the asp, have steadfastly refused to cast a glance through
the telescope? What shall we make of this? Shall we laugh or shall we cry?
Verily, just as serpents close their ears, so do these men close their eyes to
the light of truth.1

Galileo was prosecuted and judged by the Catholic inquisition, ending his days in
house arrest, see Finocchiaro (1989) for a detailed account. Over time, the “Galileo
affair” backfired badly for the church, making Galileo a martyr of scientific progress
in public opinion; see for example the play Life of Galileo by Bertolt Brecht (1955).
Hence, retrospectively, Galileo critics are frequently portrayed as obstinate fools that
deny obvious conclusions or even refuse to see what is clearly put in front of their
eyes, as Galileo complains in his letter to Kepler. Notwithstanding the scientific merits
of Galileo, for the purpose of this article, it is important to carefully examine some
arguments presented by his critics, as well as some counter-arguments presented by
his contemporary supporters; this is the main objective of this section.

Cesare Cremonini (1550-1631) was a professor of Aristotelian philosophy at the
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university of Padua and a personal acquaintance of Galileo. Nevertheless, he vehe-
mently refused to acknowledge the objects Galileo insisted could be seen trough the
telescope, as attested in quotation in a letter written in 1611 by Paolo Gualdo (1553-
1621) to Galileo:

[Cremonini:] I do not wish to approve of claims about which I do not have
any knowledge, and about things which I have not seen; moreover, look-
ing through those glasses confuses my head. Enough! I do not want to hear
anything more about this. (Galileo, Opere, vol.XI, no.564, p.165.)2

Cremonini’s dizziness or mind confusion (m’imbalordiscon la testa) when looking
through Galileo’s telescope can be interpreted as a reference to the blurry images
produced by those primitive telescopes. Following the analysis of Bernieri (2012),
the aberration effects in Galileo’s 1610 telescopes should impose a resolution limit
of two and a half Jupiter’s equatorial radii for resolving a moon from the planet’s
edge. At Figure 2, Galileo seems to report a situation beyond what he could directly
observe. Our point is not to question Galileo’s drawings or data, but to highlight
the importance of taking into account the quality of Galileo’s instruments, measured
by how sharp or blurry were the images they could provide. After all, it is easy to
understand how low quality telescopes could undermine the credibility of Galileo’s
observations – it would be difficult for Galileo to convince someone by asking him or
her to look at something he or she could not directly and clearly see. Cremonini denial
of the new “objects” presented by Galileo’s telescope are further analyzed in Muir
(2007), Boorstin (1983) and Biagioli (1993, p.238). Fortunately, Galileo’s discoveries
triggered a rapid development of lens grinding techniques and telescope construction
technology, improving image magnification and resolution, and dissipating concerns
in the line of those raised by Cremonini.

Christopher Clavius (1538-1612), an influential Jesuit mathematician and as-
tronomer, rejected Galileo’s discoveries based on rather different concerns. He ar-
gued that telescopes are instruments designed with the specific purpose of creating
optical illusions. Hence, any conclusions based on telescope observations should be,
in principle, dismissed as “fake news”.

Clavius said . . . about the four stars [moons of Jupiter], that’s ridiculous, for
one needs to manufacture a spyglass that creates them for next display them,
and that Galileo can have his opinion and he shall have his own. (Galileo,
Opere, vol.X, p.442.)3

At the time of Galileo’s discovery, most available books treating the area of optics,
like Fontana (1420) and Porta (1558), teached the art of Magia Naturalis, namely,
how to perform wonderful tricks and surprising experiments that could be produced
by natural means and used to entertain the public, including burning glasses, mirror
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Figure 3: Optics books by Fontana (1420) and Porta (1589, 1658 & 1610).

chambers and magic lanterns projecting illusions, see Figure 3 (left and center). Con-
sidered in the context of this cultural background, Clavius’ objections do not seem
unreasonable.

In May 1611, Luca Valerio (1553-1618), a Jesuit mathematician, formulated an
epistemological counter-argument to the aforementioned objections, based on evi-
dence provided by repeated and consecutive observations, see next quotation and
also Biagioli (2006, p.111) and Favaro (1983, v.I, p.573). On one hand, pragmati-
cally, Valerio’s argument could justify the use of methods devised to filter out common
artifacts from crude observational data, correct regular distortions, or interpolate
between observations, as routinely done in modern astronomy. On the other hand,
epistemologically, Valerio’s argument provides some support for trusting a telescope,
even lacking any explanation of how and why such an instrument works.

It has never crossed my mind that the same glass [always] aimed in the same
fashion toward the same star [Jupiter] could make it appear in the same
place, surrounded by four stars that always accompany it ... in a fashion
that one evening they might appear, as I have seen them, three to the west
and one to the east [of Jupiter], and other times in very different positions,
because the principles of logic do not allow for a specific, finite cause [the
telescope] to produce different effects when [the cause] does not change but
remains the same and maintains the same location and orientation.

In his later works, della Porta (1610) tries to explain how optical instruments
work. Nevertheless, despite their diagrammatic or geometric appearance, these ex-
planations are mostly descriptive and qualitative in nature, see Figure 3 (right), Heef-
fer (2017) and Borrelli (2017). Galileo himself offered no explanations on the inner
workings of a telescope; on the contrary, he protected the technology of telescope de-
sign and construction as trade secrets, for selling telescopes, or giving them as gifts
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Figure 4: Kepler diagrams explaining his refraction law (top left), simple optical ele-
ments like lenses and mirrors (top right), and compound instruments (bottom).

to influential people, was for him a source of income and prestige, see Biagioli (2006,
p.127).

In the same year of 1610, Kepler answered Galileo’s letter, expressing a very dif-
ferent attitude; for an inspiring short biography see Koestler (1960), for Kepler’s gen-
eral attitude concerning theoretical explanations see Holton (1988), Martens (2000)
and Stephenson (1987). For Kepler, providing a good optical theory and explaining
the bases of telescope technology was an important task to perform in gaining the
public trust, as stated in the next quotation.

In the Optical part of astronomy, I gave and explained a lucid geometrical
demonstration of what happens in simple lenses. . . . moreover, concerning
the widely available circular tubes with two lenses, including the very instru-
ments you, Galileo, have used to pierce the heaven: I am trying to convince
the incredulous to have faith in your instruments. (Kepler 1610, p.17–18,
Dissertatio cum Nuncio Sidereo.)4

Figure 4, from Kepler’s Astronomiae pars Optica, shows some diagrams (original
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and modern versions) used by Kepler to explain his optical theory, see Kepler (1604;
1611; 2000, p.218), Heeffer (2017), Malet (2003) and Molesini (2011). Appendix
A presents this theory, known today as paraxial optics, in a very simple and compact
form with the use of the modern language of Linear Algebra.

Kepler’s theory follows a three-step program in the task of explaining how and
why a telescope works, steps that could be characterized as follows:

Scientific laws: Provide a sound theoretical framework based on laws formulated
as mathematical equations. In the case at hand, the pertinent scientific law
relates the incidence and refraction angles of a light ray crossing the boundary
between two propagation media, like from air to glass or vice-versa.

Analysis: Identify key elemental parts of a system and provide a good understanding
of how and why such single or separate elements work. In the case of a refract-
ing telescope, the key optical elements are (thin, spherical, glass) lenses.

Synthesis: Provide compositionality rules, teaching how to put together several sin-
gle elements in order to construct a complex system. In the case of a refract-
ing telescope, this comprises means and methods for specifying distinct lenses
and their location in a tubular supporting structure in order to produce sharp
images.

The next sections will examine and further explore Kepler’s three-step program.
Section 3 examines this program as a didactic approach to teaching science. Section
4 explores the epistemological consequences of this program and the fundamental
role it plays in the Objective Cognitive Constructivism epistemological framework.

3. Playing the Game of Science: Objective Cognitive
Constructivism

Os Cientistas (The Scientists) series was a joint project launched in 1972 by FUNBEC
- the Brazilian Foundation for Science Teaching, and Abril Cultural, a publisher spe-
cialized in magazines and inexpensive books, see Pereira (2005). The series had 50
issues in total, sold every 2 weeks at news stands nation wide. Each issue contained:
(a) A fascicle with a richly illustrated and historically situated biography of an impor-
tant scientist; (b) An instruction manual for doing empirical experiments related to
that scientist’s work; and (c) A small box containing necessary materials. The cost of
each issue was equivalent to only a couple of US Dollars, making it easily accessible
and affordable to teenagers interested in learning science in Brazil, at that time a
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Figure 5: The Scientists – Descartes – kit of experiments.

Figure 6: Polyopticon – Optical components and construction kit

fairly low-income country, see Civita (1972) and Pereira (2005). A didactic and com-
mercial success, the series was re-edited a few times during the 70’s and 80’s, until
it was discontinued due to new safety standards in the toy industry.

Os Cientistas issue featuring René Descartes, suggests several experiments for un-
derstanding his refraction law. The provided materials include a battery lantern as
light source, slit-screens as simple collimators, printed scales used for angular mea-
surements, and a few small acrylic containers shaped as a half-cylinder, prisms, etc,
see Figure 5. These containers can be filled with liquids of different refractive indexes
(approx.value), like water (1.33), olive oil (1.45), monochlorobenzene (1.53), etc.

Polyopticon, manufactured by the Brazilian company D. F. Vasconcellos, was a
“construction kit” for optics, see Figure 6. It was sold at toy stores, remained in pro-
duction from around 1960 to 1980, and was also exported to the USA. The kit con-
tains a variety of simple optical elements, like a prism, mirrors, and lenses of sev-
eral shapes. Each lens is mounted on a supporting ring, and pieces of plastic tubing
are used to connect multiple elements. Supporting rings and tubes are all screw-
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Figure 7: Kosmos-Baukasten, Optik, 1923.

threaded, allowing for easy but stable and precise adjustment of distances between
well-aligned optical elements. The construction kit allows the assembly of a variety
of microscopes, telescopes, and other optical instruments.

The preceding examples are late descendants of earlier efforts on popular scien-
tific education; among those, some of the best known and most influential are the
celebrated Kosmos Baukästen, manufactured in Germany from around 1920 to the
present day, see Figure 7 and Fröhlich (1923). All the aforementioned didactic re-
sources are concerned with teaching of basic optics, and all of them seem to promote
Kepler’s approach for “guiding the perplexed” into a path of understanding. Specifi-
cally, they focus on one or more of the following steps:

(a) Explain the precise and invariant laws that govern the trajectory of light rays
when reflected or refracted at smooth interfaces between distinct propagation
media;

(b) Explain the behavior of simple optical elements, like mirrors, prisms or lenses;

(c) Explain how to compose or assemble complex systems putting together simple(r)
optical components.

This three-step approach is closely related to the cognitive constructivist fundamental
insight on the construction of objective realities, to be presented at the next sections.

In the next sections, we will continue to explore the metaphor of science as
provider of sharper images of our world and, therefore, will continue to stress op-
tical analogies. Nevertheless, it should be clear that the epistemological framework
of Objective Cognitive Constructivism applies to any discipline of exact sciences and,
with the necessary adaptations, also far beyond. Figure 8 (top) shows “Os Cientistas”
issue featuring Robert Hooke (1635-1703) and the accompanying experimental kit
treating his deformation law, how to test it, and how to use it to build dynamometers
for measuring forces. Figure 8 (bottom) depicts spiral-coil dynamometers, and how
to use them to demonstrate and check the parallelogram law in the context of static
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Figure 8: Hooke’s law, force measure, and (de)composition principles

force (de)composition; for a detailed discussion of the Objective Cognitive Construc-
tivism epistemological framework in this application context, see Stern (2017a).

4. Recursive Production of Objective Realities: Circularity
and Emergence of Eigen-Solutions

Galileo’s telescopes did not appear out of nothing nor all at once. On the contrary,
they have evolved along a well documented historical process over a period of several
centuries. Ancient Greek and medieval Arab documents already describe the magni-
fying effect of spherical and lens shaped glasses, some of this knowledge being lost or
forgotten during the European middle ages, see Bellosta (2002), Khan (2015), Mihas
(2008) and Rashed (1993). European paintings and documents from the end of the
middle ages attest the use of lens spectacles to remedy a variety of vision deficiencies,
see Ilardi (2007). Fracastoro (1538, p.18), as quoted in Helden (1977, p,28), makes
reference to double-lens spectacles used by visually impaired patients. Finally, in the
turn of the XVI to the XVII century, Dutch and Italian lens grinders learned how build
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a simple telescope by installing two lenses into a tube, with either two convex lenses
or one convex and one concave lens, see Helden (1977, p.15, 35, 50), Ilardi (2007,
p.209, 218), Porta (1589, 1658, p.368) and Sirtori (1618).

From the Objective Cognitive Constructivism epistemological perspective, a lot
can be learned by analyzing this historical evolution process: On one hand, it is im-
portant to realize that mankind did not have in advance a well determined road
map to follow; on the contrary, free trial and random experimentation had an impor-
tant role to play in this process. On the other hand, this process was not just driven
by wild guessing and sheer luck; on the contrary, this process had a convergent or
self-organizing nature that requires close attention. Figure 9 gives a diagrammatic
representation of several important aspects of this process and how they interact:

In the optical instrumentation production diagram, the right column represents
technological know-how required to specify the components, like the shape of lenses
and mirrors, and their correct assembly into an instrument, like a telescope. The bot-
tom row of the diagram represents operational know-how, like lens or mirror grinding
techniques, a business that requires specialized tools and materials. Moreover, an ar-
tisan manually grinding a component will hardly get it perfect at the first try; on the
contrary this is a gradual process based on careful measurement of the component
characteristics and shape corrections, see Section 6 for further details. In the same
way, the assembly of a telescope requires gradual calibration of lens alignment and
positioning in order to obtain the clearest images. The production and development
of optical instruments also requires a circumstantial understanding of the aforemen-
tioned procedures, and such an understanding is best provided in the context of an
appropriate theoretical framework, as already analyzed in sections 2 and 3; this is
represented at the left column of the diagram. Understanding – why things are or
behave and why they do – constitutes, by definition, metaphysical or causal expla-
nations, represented at the top row of the diagram. Causal explanations are needed
to make sense of what is routinely done and, every once in a while, can also provide
innovative intuitions.

Innovation can be beneficial all along the production cycle: New ideas can en-
hance the design and specification of instruments and components, refine production
means and methods, or even improve the background theory itself. However, not ev-
ery innovation proposal is successful – in fact, only very few prevail. Therefore, it is
important to have good criteria to distinguish what works from what does not.

The precise formulation of good performance criteria can become quite sophisti-
cated and technical, see Section 6. Nevertheless, the essential motivation for such cri-
teria is easy to comprehend: Pragmatically, good optical instruments should present
sharp(er) images of our world. This pragmatic ideal is expressed in several versions
of a well-known pun:
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Theoretical | Metaphysical | Technological

Mathematical ⇒ Causal ⇒ Instrument
formalization explanation specification

⇑ ⇓
Speculative Sharp∗ Project design

interpretation images & calculation
⇑ ⇓

Aberration Calibration/ Fabrication
analysis ⇐ observations ⇐ /assembly

optics | Operational | know-how

Figure 9: Optical instrumentation production diagram.

Theoretical | Metaphysical | Technological

Mathematical ⇒ Causal ⇒ Hypotheses
laws and models explanation formulation

⇑ ⇓
Speculative Sharp∗/ precise Empirical

interpretation laws and rules trial design
⇑ ⇓

Statistical Data Experiment
analysis ⇐ processing ⇐ execution

knowledge | Operational | know-how

Figure 10: Scientific production diagram.

• The proof of the pudding (or putting) is in the tasting (or testing);

• La pruova del testo è la torta,

– The test of the text (or baking pot) is the pie (or the twisted thing itself).

As clearly displayed in Figure 9, the optical instrumentation production diagram
has a cyclic configuration. All its components are circularly linked, and their devel-
opment imply cross-referent and recursive processes. Finally, sharp images obtained
from good optical instruments are represented as emerging entities at the center of
the diagram. This representation conveys the idea that such fine images are the result
of an essentially recursive development and perfecting process.

Figure 10 depicts the Scientific production diagram as a close analog to the pre-
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viously presented optical instrumentation production diagram. Instead of sharp im-
ages, precise scientific laws and exact compositional rules occupy the center of the
diagram. In mathematical statistics, precise laws are represented by sharp statistical
hypotheses formulated as mathematical equations, and these hypotheses can, in turn,
be tested for their precision and accuracy. Technical aspects of design of empirical
trials or experiments, data collecting and processing tools, and statistical analysis
methods are represented at the right column and bottom row of the diagram. The
use of mathematical models and development of scientific theories is represented at
the left column of the diagram. Finally, causal explanations are represented at the top
row of the diagram. Causal explanations are needed to make sense of routine scien-
tific activities and, occasionally, can also provide innovative intuitions leading to new
scientific hypotheses. Finally, precise scientific laws and exact (de)composition rules
obtained from good scientific theories are represented as emerging entities at the
center of the diagram. This representation conveys the idea that such fine scientific
laws are the result of an essentially recursive development and perfection process.

As it is typical of evolutionary processes, either in the case of optical instruments
or in the case of scientific disciplines, development and perfection histories can not
be characterized, in the long run, by homogeneous convergence, but rather by a mix-
ture of relatively smooth processes, like the fine-tuning of theory and experimental
methods within a given framework, in combination with more abrupt jump processes
or sudden transitions between distinct frameworks.

For example, in the XVII century, reflecting telescopes were introduced as a novel
technology offering significant advantages over refracting telescopes, see King (1955).
As a second example, Venables (2017) shows how Amateur Telescope Making was
made possible by two almost simultaneous breakthroughs by Léon Foucault (1858,
1859): First, the invention of a chemical process for silver coating glass; second, the
invention of a new simple and efficient procedure for testing and correcting the shape
of a mirror during the grinding process.

An example of discontinuous transition between theoretical frameworks is the
replacement of Kepler’s by Descartes’ law of refraction, see Section 5 for further
comments. Kepler’s paraxial optics establishes a linear relation that can be stated
(in modern notation, see Appendix A) as n1θ1 = n2θ2, where θ1 and θ2 are the
incidence and refraction angles of a light ray crossing the boundary between propa-
gation media characterized by refraction indices n1 and n2, receptively, see Figure 12
(right). In contrast, Descartes’ law of refraction states a non-linear relation between
the aforementioned variables of interest, namely, n1 sinθ1 = n2 sinθ2. Descartes’ law
was a remarkable breakthrough, even considering that, for small angles (as is often
the case for thin lenses used inside a telescope), Kepler’s paraxial law provides a good
approximation, θ ≪ 1 ⇒ sinθ ≈ tanθ ≈ θ . For further comments on evolution of
scientific disciplines from the perspective of Objective Cognitive Constructivism, see
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Figure 11: Fixed-point method converging to x = cos(x) = 0.739085 . . .

Esteves et al. (2019) and Stern (2014, 2017b).
Notwithstanding the complex nature of the historical development of either tech-

nologies or scientific theories, we argue that an important conclusion holds: their
evolution can be characterized as an essentially recursive development process con-
verging, at least locally, to progressively perfected (eigen-) solutions.

Objects are Tokens for Eigen-Solutions: Precision, Stability, Separability
and Composablility

This subsection examines the nature and representation of recursive processes, the
concept of eigen-solution an its essential properties, and their importance for the
justification of qualified forms of circular argumentation.

Recursive computational methods are routinely used in applied mathematics. Fig-
ure 11 illustrates the Fixed Point iteration method, based on the repeated iteration
xn+1 = f (xn), being used to compute f (x) = cos(x), starting at x0 = −1. Conver-
gence to an invariant point, x = f (x), is not guaranteed, only occurring under certain
regularity conditions, see Garcia et al. (2003), Kelley (1987a,b) and Wimp (1984). In
one dimension, such an invariant point can also be called an eigen-value, and this con-
cept can be generalized to multi-dimensional spaces, for example: An eigen-vector, x ,
of a vector space operator A (a matrix operator in ordinary linear algebra) is defined
by the recursive relation x = (1/α)Ax . Under appropriate regularity conditions, the
set of such eigen-vectors constitutes a basis, that is, any vector in the space can be
decomposed into or recomposed from these basic eigen-vectors, see Sadun (2007).
Well behaved invariants in functional spaces are called eigen-functions and, in general
settings, such entities are called eigen-solutions. This is the departing point for Heinz
von Foerster (1911-2002) celebrated aphorisms:
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• Objects are tokens for eigen-behaviors; and

• Eigen-solutions are precise (sharp), stable, separable and composable.

von Foerster used variant forms of this celebrated aphorism, see Foerster and Se-
gal (2001) and Foerster (2003), to convey the following ideas:
• The “objects” we perceive in our environment stand for invariant forms or fixed-
points of our behaviors or ways of interaction with the same environment;
•Well-behaved (or objective) invariants are characterized by the four essential prop-
erties stated above, a topic to be further developed in Section 6.

Circular argumentation is often identified as an indicator of fallacies, for it can be
used to support all sorts of bogus statements. For example, a lier and his accomplice
can argue: “I never lie, as my friend can attest; and my friend opinion is reliable,
for I vouch for him.” Under this circumstances, being aware of its intrinsically circu-
lar and recursive nature, what is the justification for using the Objective Cognitive
Constructivism epistemological framework in the context of science?

We claim that such a justification can be found in the four essential properties of
eigen-solutions, namely: Precision (or sharpness), stability, separation and composi-
tion. Precision (or sharpness) is the hallmark of exact sciences, in fact, this is why
they are called “exact”. The great heroes of a scientific discipline can be easily found
in a textbook’s subject index: Their names are associated to the discipline’s precise
laws or equations (like Kepler’s laws in astronomy, Newton’s law in classical mechan-
ics, Maxwell’s law in electro-magnetism, Einstein’s equations in special or general
relativity, etc.). There is good reason for the status of these heroes and, more impor-
tantly, the high status of the corresponding eponymic laws or equations. More refined
explanations concerning the four essential properties of eigen-solutions are given in
the following sections. For now, it suffices to acknowledge that the precision of the
aforementioned equations, together with their compositionality properties (that is,
their analytic and synthetic power) are ultimately responsible for the success of ex-
act sciences that, in turn, constitute the foundation of all subsequent technological
applications that, in turn, allow the production of so many gadgets and wonders we
enjoy in the modern world.

This conjunction of, on one hand, the very high standards for the testing and
validation of scientific laws imposed the four essential properties of eigen-solutions
(precision, stability, separability and compositionality) and, on the other hand, the ex-
traordinary power of scientific laws is, we claim, the primary source of justification for
accepting the circular characteristics of the Objective Cognitive Constructivism epis-
temological framework. In a nutshell, we argue that this combination of pragmatic
power and high standard of validation provides a firm grip on reality, supplying reli-
able anchors for a scientific discipline; in this specific sense, the same scientific disci-
pline can be considered objective. In the context of mathematical statistics, the degree
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of precision and accuracy of a statistical hypothesis, together with the exactness and
analytic/ synthetic power of (de)composition rules associated to the corresponding
eigen-solutions, are the key to define quantitative measures of objectivity, as further
discussed in Section 7.

Formally, a set of circular (coss-referent and recursive) definitions can be han-
dled rigorously using non-well-founded set theories, see Aczel (1988), Barwise and
Etchemendy (1987), and Barwise and Moss (1996). Computationally, circularly de-
fined data sets can be represented, stored and manipulated using appropriate data
structures, see Akman and Pakkan (1996), Iordanov (2010), and Pakkan and Akman
(1995).

Sections 6, 7 and 8 examine in further detail the role and characterization of
eigen-solutions in the Objective Cognitive Constructivism epistemological framework.
Meanwhile, Section 5 examines in further detail the role of causal explanations in the
practice of science, with particular attention to some aspects of circular forms of ar-
gumentation that complement the discussion of this section.

5. Know-Why and Effective Metaphysics

In 1637 Descartes explained his refraction law, sinθ1/ sinθ2 = n2/n1, using an anal-
ogy based on the trajectory of bouncing tennis balls, see Figure 12 (left and center). In
the case of reflexion, the horizontal (or tangential to the media’s boundary interface)
component of the ball’s velocity remains unchanged, while its vertical (or normal to
the interface) component is inverted. By analogy, in the case of (light’s) refraction,
Descartes assumed the tangential velocity to remain unchanged, while he assumed
the total velocity to be a characteristic of the medium. Moreover, Descartes assumed
the (total) velocity of light to be proportional to the medium’s refraction index, see
McDonough (2015, p.552) and Mihas (2008). Hence, in Descartes’ interpretation,
n2/n1 = v2/v1, implying that light travels faster in more refractive media.

In 1662 Pierre de Fermat derived the same refraction law from the least time
principle, stating that a light ray traveling from point P to point Q takes the path that
minimizes its travel time, see Figure 12 (right). Unlike Descartes, Fermat assumed
that the speed of light is inversely proportional to the medium’s refraction index.
Hence, in Fermat’s interpretation, n2/n1 = v1/v2, implying that light travels slower in
more refractive media. Appendix B gives a simple derivation of Descartes’ refraction
law from Fermat least time principle using the language of modern calculus.

Notice that both Descartes and Fermat worked long before any measure of the
speed of light was available. The first quantitative estimate of the speed of light, in
sidereal space, was obtained in 1976 by Ole Roemer (1644-1710), making use of
what we would today call a “Doppler effect” on the apparent period of Io (a satellite
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Figure 12: Tennis ball analogy for Descartes’ (1637) law

of Jupiter discovered by Galileo in 1610), see Shea (1998) for further details and a
historical contextualization of Roemer’s work. Almost two centuries latter, in 1850,
the first direct measurements of the comparative speed of light in distinct material
media (like air and water) were obtained by Léon Foucault (1819-1868) using a ro-
tating mirror device, see Tobin (1993) and Jaffe (1960) for further details. Only these
latter measurements could finally settle the old controversy concerning the faster or
slower speed of light in more refractive media, favoring Fermat over Descartes.

The aforementioned examples by Descartes and Fermat are fine examples of meta-
physical models, where the adjective metaphysical is used in two distinct but com-
plementary senses: First, in the literal sense, a meta-(beyond)-physical model makes
reference to non-observable entities or non-observed quantities like, in the case at
hand, the speed of light. Second, in the gnoseological or Aristotelian sense, a meta-
physical model provides answers for why questions, that is, it provides explanations
for why things are or behave the way they do.

Notwithstanding the practical impossibility of observing the speed of light at the
time of Fermat and Descartes, their models offered contradictory predictions con-
cerning the proportionality or inverse proportionality relation between the speed of
light and the propagation medium’s refraction index. Moreover, these contradicting
predictions awoke the curiosity of scientists, sparkled the imagination of philosophers
and drove centuries of research in the field of optics, including the development of
technological means and methods for measuring the speed of light, as well as the de-
velopment of alternative models and theories concerning the nature and properties
of light. For historical perspectives of several competing theories of light we refer to
Ronchi (1970), Sabra (1981) and Zemplén (2005).

Descartes’ model focus on efficient or moving (κινoυν) causes, that is, it focus
on the agents that interact in a process to make something behave the way it does.
In the model at hand, distinct propagation media interact with tennis balls or light
rays so that they are forced to change their velocity in a certain way (given specific
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initial conditions). In contrast, Fermat’s principle offers a teleological or final cause,
that is, it explains a process by the goal or end (τελoς) at which the process is
directed. In the model at hand, the goal is to minimize the travel time of the light ray
(given specific boundary conditions). These causes or explanations (αιτια) are very
different in nature, for example: Efficient causes refer to events occurring before what
is being explained, that is, they are based on prior conditions to the explanandum.
In constrast, teleological explanations refer to events occurring after what is being
explained, that is, they are based on posterior conditions to the explanandum.

Fermat’s principle is expressed minimizing total travel time; mathematically, this
principle can be formulated by minimizing an integral of the (differential) quantity
ds = 1 d t. In a similar way, Leibniz, Euler, Mauperius, Lagrange, Jacobi, Hamilton,
and many others were able to reformulate Newtonian mechanics, minimizing the
integral of (differential) action, ds = L(t) d t, where the Lagrangian, L(t), is the
difference between the kinetic energy (Leibniz’ vis viva), (1/2)mv2, and the potential
energy of the system (Leibniz’ vis morta). Hence, these formulations are called in
physics principles of minimum action or principles of least action; for an elementary
text see Lemons (1997), for standard introductions see Goldstein (1980), Krasnov et
al. (1973) and Marion (1970), for historical accounts see Dugas (1988) and Goldstine
(1980), for philosophical discussions see Nagel (1979), Tomasello (2005), Yourgrau
and Mandelstam (1960) and Woodfeld(1976).

At the end of the XIX century, least action and closely related teleological prin-
ciples became the grand unifying theme for theoretical physics – in the words of
Helmholtz (1887), a leitmotif dominating the whole of physics – and the accompany-
ing methods of variational calculus became one of the most powerful tools of math-
ematical physics and other natural sciences, see Yourgrau and Mandelstam (1960,
ch.14). Notwithstanding the enormous importance of least action principles in mod-
ern science, there are persistent philosophical suspicions or even outright distrust
concerning the use of teleological principles. The reason for these suspicions are re-
lated to the possibility of assuming causal influences traveling backwards in time,
leading to fallacies closely related to the vicious forms of circular argumentation dis-
cussed in the previous section, see Nagel (1979), Terekhovich (2012) and Woodfleld
(1976).

One way out of the possible circularity implied by teleological principles is to
invoke a prior existing mind, consciousness, controller or similar entity that is able
to foresee or take into consideration (either perfectly or with some uncertainty) all
possible evolution paths that could be taken by the system, and then choose (by
setting appropriate decision variables) the path that will best attain or come closer
to the stipulated goal. However, in many applications, like the laws of physics, such
an assumption may seem strange or spurious, see Helrich (2007). Even in the case of
a biological organisms, where such assumptions may be natural, we may not know in
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sufficient detail the inner workings of the postulated controllers, making them weak
providers of efficient causes.

The literature of Cybernetics and System’s Theory offers some epistemological
settings conceived to overcome the aforementioned difficulties related to the use of
teleological principles, some of which could be seen as precursors to ideas discussed
in the previous section. We proceed with a brief exposition and comparative analysis
of a specific example, in hope of further clarifying the perspective offered by the
Objective Cognitive Constructivism epistemological framework.

Gerd Sommerhoff (1915-2002) proposes the notion of teleology as an abstract
but objective systemic property that can be discovered and attested by observing the
behavior of a system (over time), without postulating any conscious purposiveness
or hidden mental states. Sommerhoff is primarily interested in living organisms and
cybernetic systems, but his concepts can easily be adapted to physical systems; in
this case, his terminology of variables in the system’s environment and action spaces
could be replaced by even more neutral terms like input and output (or answer)
variables. In a nutshell, Sommerhoff (1969; 1990, ch.3) notion of goal-directedness
as an objective system-property can be summarized as follows:

(1) If an action is directed towards a goal G, then [. . . ] there exist at at least one point
in time tk during the action, two variables e and a defined on the environment
and the action [space] respectively, and a function f such that f (ak, ek) = 0 is
a necessary condition for the subsequent occurrence of G. (Sommerhoff 1969,
p.167).

(2) The variables a and e in the funcion f introduced above are mutually orthogonal
[. . . that is. . . ] f (ak, ek) = 0 is a condition that must be brought about by the
mechanism involved. It is not implied by the axioms of the system. Indeed, random
combinations of a and e are conceivable initial states of the system. (Sommerhoff
1969, p.165).

(3) The results produced by these directive processes have a high degree of a priori
improbability. Indeed, it can be said that the sense of wonder we feel . . . is es-
sentially a surprise reaction evoked by the seeming improbability, and hence un-
expectedness, of the phenomena we witness. And in each case these phenomena
have come about, despite their inherent improbability because they have been the
end-product of a directive activity of one kind or another. . . (Sommerhoff 1990,
p.50).

Let us consider the three conditions above stated by Sommerhoff. If a and e are
variables in a continuous space (like real numbers or vectors), the equation f (a, e) =
0 defines a precise subset of the same space (technically, a lower-dimensional alge-
braic sub-manifold). Such a subset is sharp, in the sense that it is very hard to be
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reached by pure chance (technically, it is a subset of zero Lebesgue or natural proba-
bility measure). Nevertheless, the laws of physics (like the refraction law) are stated
in this exact manner. Furthermore, we can attest how the phenomena described by
these laws “come about despite their inherent improbability”. In the Objective Cog-
nitive Constructivism epistemological framework this situation is known as the Zero
Probability Paradox – regarding the possibility of attesting strong statistical support
for a statement describing an extremely improbable (zero measure) event. For an
extended discussion of the Zero Probability Paradox and its epistemological conse-
quences, see Stern (2011b); for the technical difficulties it poses to traditional meth-
ods for test of hypotheses in statistical science and how these difficulties are overcome
by the e-value significance measure, see Stern and Pereira (2014) and Esteves et al.
(2019).

Before ending this section, let us make a few comments on the importance of
metaphysical models, focusing on the use of alternative models even when they
do not directly imply discrepant empirical consequences. Richard Feynman (1964,
ch.19) analyses three different but mathematically (almost) equivalent ways of for-
mulating the classic law of gravitation, namely, using Newton’s attraction forces, the
local field method, and the principle of least action. Feynman (1985, pp. 50-53) says:

Mathematically each of the different formulations [...] gives exactly the same
consequences. That is true. They are equivalent scientifically [. . . ] there is
no experimental way to distinguish between them if all the consequences
are the same. But psychologically they are very different in two ways. First,
philosophically you like them or do not like them; and training is the only
way to beat that disease. Second, psychologically they are different because
they are completely unequivalent when you are trying to guess new laws. As
long as physics is incomplete, and we are trying to understand the other laws,
then the different possible formulations may give clues about what might
happen in other circumstances. In that case they are no longer equivalent,
psychologically, in suggesting to us guesses about what the laws may look
like in a wider situation.

Richard Feynman offers the view of a great scientist pushing the state of the art
in physics, a task he was able to successfully accomplish several times; for a prime
example of his accomplishments related to formulation of Quantum Mechanics by
teleological principles, see Feynman and Hibbs (1965). I will add some remarks on
the importance of considering alternative metaphysical models and mathematical
formulations of physical laws from the humble perspective of a physics teacher:

Occasionally, I had the responsibility of teaching an introductory discipline in An-
alytical Mechanics to junior students of physics or applied mathematics, using stan-
dard textbooks like Marion (1970) or Goldstein (1980). One of the first tasks in such
a discipline is to prove that (except for some exceptional cases at the corners of the
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Figure 13: Grinding, testing & adjusting a telescope mirror precise shape

formalism) the laws of mechanics, as described by Newton, Lagrange or Hamilton,
are exactly the same. However, after achieving this goal, I emphatically warn the
students that such theorems can be quite misleading. More specifically, I try to show
them that, if they want to harness all the power provided by the tools of Analytical
Mechanics, they should be willing to embrace full-heartedly its teleological spirit, and
get ready to ask and imagine – what is it that the particle or the spin-top “should do”
or “wants to do” — in order to minimize the appropriate functional of its (future) tra-
jectory. This is not an easy skill to master, being perhaps even more challenging then
the skills needed for correct algebraic manipulation of the pertinent equations. Nev-
ertheless, from my experience, developing this sort of geometric view and analogical
thinking is the very key to success in this discipline, for it provides the guidelines to
approach each new problem, to correctly structure its mathematical framework, and
to assemble the equations required to solve it.

6. Know-How and Well-Adapted Ontologies

As a teenager, in the early 70’s, I had the opportunity to take classes at the São
Paulo municipal planetarium, and also to participate at the local Amateur Telescope
Making club. Figures 13 (left) illustrate the activity of grinding your own telescope
mirror, a task accomplished by rubbing two initially plane glass discs against each
other with the help of a sequence of coarser (for grinding) to finer (for polishing)
abrasive powders. In this process, the disc at the top, the tool, takes a convex shape,
while the disc at the bottom, the mirror, takes a concave shape. The goal of this long
and tedious work is to obtain a perfectly spherical (or parabolic) and well polished
mirror piece, that can then receive a light reflective silver coating, in order to be used
as a mirror for an actual amateur telescope, see Ingalls (1953), Thompson (1947)
and Texereau (1957).

All points on the surface of a perfectly spherical lens or mirror should be at the
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same distance of its center of curvature. However, actual grinding is not a flawless
process, and real lenses or mirrors deviate from their ideal forms. Consequently, the
surface of an actual mirror or lens wabbles around its ideal form, like the waves
exhibited by a thin disc plate vibrating around its natural resting plane, or the ripples
we see at the surface of the cup of coffee in Figure 14 (center). Figures 14 (left
and right) show typical angular and radial profiles of these characteristic modes of
vibration.

The aforementioned characteristic forms of vibration can be mathematically de-
scribed by special eigen-functions. Figure 15, a composite from Genberg and Michels
(2004) and Zou and Wattellier (2012), gives, at the top row, an illustration of a few of
these eigen-functions, that also describe typical forms of aberration (i.e., deformation
relative to its ideal form) that may occur in the surface of a mirror. The next subsec-
tion comments on some relevant mathematical properties of these eigen-functions.

Thank God, as a teenager, I did not need to know all that heavy mathematics
in order to make my amateur telescope. Figures 13 (right) and Figure 15 (middle
row) illustrate a practical technique (developed by the already mentioned Léon Fou-
cault) used to carefully illuminate the surface of the mirror piece during the grind-
ing process in order to obtain light and shadow effects that allow the detection of
the aforementioned aberrations, see Harbour (2001) and Texereau (1957). Once a
characteristic aberration is detected, a corresponding corrective grinding maneuver
(a.k.a. retouching procedure) can be applied, allowing the mirror fabrication process
to converge to the desired ideal form, see next sub-section for additional details.

Historically, see Abrahams (1994) and King (1955), practical know-how used for
telescope making was developed by optical artisans long before the development of
the corresponding mathematical eigen-function theory, even though, as it can clearly
be seen in Figure 15, there is a close connection between the two.

Figure 15 (bottom row) depicts the image of a single and distant bright point
produced by an optical element (mirror or lens) suffering from the corresponding
aberration. The reader will probably recognize the standard names given to these

Figure 14: Waves and wobbles on the surface of a disc

PRINCIPIA 24(2): 255–297 (2020)



278 Julio Michael Stern

Figure 15: Z(n, m)— Zernike eigen-functions and objects in ophthalmology and
optics: Z(2,0), Defocus; Z(2,2), Astigmatism; Z(3,1), Coma; Z(4,0), Spherical.

eigen-forms as “diagnostics” made by an ophthalmologist or optometrist, for these
names correspond to typical aberrations affecting the biological lens of an human
eye. Long before the invention of the telescope, since the late XIII century, artisans
manufacturing magnifying glasses and spectacles had a practical know-how about
these eigen-forms, being able to manufacture eyeglasses with the same or comple-
mentary characteristics that, in turn, were used to alleviate corresponding symptoms
of their patients. In fact, it can be argued that it was the ready availability of a variety
of such lenses that made the invention of the telescope possible in the XVII century,
see Helden (1977), Helden et al. (2010), Ilardi (2007) and also Morrison (1987),
including the episode Lenses and Telescopes from the accompanying PBS videos.

Now the stage is set for discussing ontology, from the perspective of the Objective
Cognitive Constructivism epistemological framework.
• In computer and information science, an ontology provides a basis for knowl-

edge representation and information processing in an established field of activity, like
a scientific discipline. It can be conceived as a formal lexicon, that is, a controlled vo-
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cabulary with nouns used to name key entities and concepts of the pertinent domain
of discourse, and also adjectives, verbs and adverbs used to name their properties
and interrelations.
• In classical philosophy, the word ontology is etymologically derived from oν or

εoν (being, that which is, actual, real), the present participle of the verb ειµι (to
be). Hence, ontology concerns the study of being, that is, it addresses the question
of what entities exist or may be said to exist, their properties and interrelations.

In the Objective Cognitive Constructivism epistemological framework, both no-
tions of ontology are brought together by the key notion of objectivity, as discussed in
previous sections. Recalling once again von Foerster’s metaphor: Objects are tokens for
eigen-behaviors. Furthermore, eigen-solutions have four essential properties, namely,
precision (or sharpness), stability, separation and composition. Finally, the quality (or
ontological status) of objects can be evaluated and measured by the degree in which
the corresponding eigen-solutions manifest their four essential properties, as further
discussed in the next subsection.

Orthogonality, Completeness, Invariance and Well-Adaptedness

This subsection discusses the four essential properties of eigen-solutions as they are
expressed, in a very strong and rigorous way, by the eigen-functions discussed in
this section. Some details in this subsection presuppose familiarity with pertinent
mathematical methods; however, these details can be skipped without impairing the
understanding of general ideas.

The characteristic (angular and radial) eigen-forms of a vibrating disc plate are
mathematically described by eigen-functions traditionally named after, respectively,
Joseph Fourier (1768-1830) and Friedrich Bessel (1784-1846), see Butkov (1968),
Courant and Hilbert (1953), and Figure 14. The corresponding joint two-dimensional
description of the plate’s vibration is known as a Fourier-Bessel decomposition, see
Butkov (1968, Sec.9.7, p.363-368), Courant and Hilbert (1953, v.1, Sec.5.6, p.307-
308), Reddy (2007, Sec.5.5.1-2, p.200-202), and Figure 15. In the field of optics,
Zernike polynomials, Z(n, m), are commonly used as a computationally more conve-
nient representation but mathematically equivalent alternative to the Fourier-Bessel
decomposition, see Khotanzad and Hong (1990), Lakshminarayanana and Flecka
(2011) and Wang et al. (2008).

Orthogonality is a strong form of separability, and a most convenient property ex-
hibited by the eigen-fuctions used in the case at hand. Orthogonality means that we
can apply a retouching maneuver designed to correct a single characteristic aberra-
tion, without aggravating another, that is, it is possible to deal separately or indepen-
dently with simple problems corresponding to each element of the eigen-function ba-
sis. From a physical point of view, each element of the Fourier-Bessel decomposition
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describes a standing, self-sustaining or resonating mode of vibration. Accordingly,
each of these eigen-forms of vibration can store a well-defined amount of energy, see
French (1971, Ch.6, p.181-188) and Stern (2017a, Sec.5).

The concept of orthogonality can be relaxed and usefully extended into many
application areas, for example: In the design of formal languages, it may designate
non-redundancy conditions; in categorization or classification systems, it may indi-
cate mutually exclusive or non-ambiguity conditions; in combinatorics, it may reveal
a matroid structure; in dynamic systems, it may imply local transversality conditions;
in statistical modeling, it may refer to non-correlation or alternative forms of non-
association; etc.

As in other examples previously examined in this article, either the Fourier-Bessel
or the Zernike basis of eigen-functions is complete, that is, any (continuous) deforma-
tion of a disc plate can be composed as a linear combination of its elements. In this
way, one can decompose a complex aberration into its basic elements, allowing for
separate corrective actions that, together, take care of the original complex problem.

Well-Adaptedness (to the specific context of application) is yet another important
property of the eigen-functions under consideration. The availability of an orthogonal
system of eigen-forms of aberration and corresponding corrective maneuvers would
be of little help if we had to apply an infinite number of them. In principle, this
unfortunate situation could be possible, for there are an infinite number of those
eigen-forms, corresponding to the eigen-functions Z(n, m) for n, m= 0,1, 2,3 . . . .

Fortunately, in the art of mirror grinding, only a few of those infinite eigen-forms
of aberration are of practical importance, namely, only eigen-forms or lower order
(that is, terms corresponding to small values of n and m) appear in practice. This
kind of fast convergence is a natural consequence of the specific eigen-functions being
used and of energy conservation and finiteness, namely: The energy stored in angular
(or radial) normal vibration modes of order, n, that is, corresponding to Fourier (or
Bessel) terms or order, n, is proportional to the square of the vibration order, n2, and
the square of the vibration amplitude, A2

n, see Jarvis (2016) and Sadun(2007). Hence,
the amplitude of higher modes of vibration must converge rapidly (super-linearly) to
zero, technically:

E =
∑︂∞

n=0
En <∞⇒
∑︂∞

n=0
n2A2

n <∞⇒ An = O (1/n3/2+δ ) .

Fourier, Bessel and similar special functions provide systems of eigen-solutions
that are well-adapted to many application areas of classical and modern physics, see
Butkov (1968) and Courant and Hilbert (1953). Hence, following a path similar to
the one taken in this article, it is possible to establish connections between elements
of such a system of eigen-functions and key elements of the scientific ontology used
in the corresponding application area. For example, Stern (2008, 2014, 2017a) ana-
lyze, from the perspective of Objective Cognitive Constructivism, the correspondence
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between key elements of musical ontology (like musical notes, chords and forms of
harmony) and the eigen-solutions of a vibrating string, see also Benade (1960). Re-
cent and ongoing research in wavelet theory aims to provide well-adapted eigen-
solutions to a wider class of problems based on concepts like self-similarity and other
recursive relations, see Aboufadel and Schlicker (1999) for a gentle introduction and
also Resnikoff and Wells (1998).

7. Heavy Anchors: Bayesian Epistemic Values

The main objective of this article is to use intuitive ideas to provide an easy intro-
duction to the objective cognitive constructivism epistemological framework. Accord-
ingly, several aspects have been presented in (over) simplified form, for one can not
hope to write a gentle introductory text striving, at the same time, for utmost rigor
and completeness. In contrast, the main objective of this section is to consider some
heavy methodological anchors developed in previous publications, for they are the
tools used to build strong and well-defined connections between intuitive but some-
what intangible epistemological ideas and the practical procedures of empirical sci-
ence. Additionally, this section surveys some previous related publications examining
more technical or narrowly focused aspects of epistemology.

Notwithstanding its introductory and intuitive character, this paper is conceived
as an integral part of a comprehensive research program in the area of Bayesian
statistics and epistemology. This section presents a general overview of this research
program, mapping several already published articles in which specific topics of inter-
est related to the present paper are discussed in greater detail and depth.

The Full Bayesian Significance Test (FBST) is a statistical test of hypothesis pub-
lished by Pereira and Stern (1999) and further extended in Madruga et al. (2003),
Pereira et al. (2008) and Esteves et al. (2016, 2019). This solution is anchored by a
novel measure of statistical significance known as the e-value, ev (H |X ), a.k.a. the ev-
idence value provided by observational data X in support of the statistical hypothesis
H or, the other way around, the epistemic value of hypothesis H given the observa-
tional data X . The e-value, its theoretical properties and its applications have been
a topic of research for many collaborators around the world for the last 20 years;
Pereira and Stern (2020) give a panoramic view of this program, listing hundreds of
publications.

Eigen-solutions, as depicted at the center of the Scientific production diagram in
Figure 10, are represented, in the context of mathematical statistics, by sharp sta-
tistical hypotheses, as depicted at the center of the Statistical modeling diagram in
Figure 16; see Stern (2017) for further details. The e-value and the FBST were spe-
cially designed to evaluate the degree of precision of sharp statistical hypotheses,
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⇑ ⇓
Statistical Data Experimental
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Parameter space (Θ) | Operational | Sample space (X )

Figure 16: Statistical modeling diagram.

and also to verify the accuracy of exact compositional rules for hypotheses of this
kind. Therefore, the e-value and the FBST can be used as a statistical touchstone that
is taylor-made to the task of accessing the objectivity of scientific eigen-solutions, as
this notion is defined in the context of objective cognitive constructivism. Further
mathematical, statistical, and logical or compositional properties of the e-value are
discussed in Borges and Stern (2007), Esteves et al. (2016, 2019), Izbicki and Esteves
(2015), and Stern et al. (2017).

The Classical or Frequentist school of mathematical statistics offers the p-value as
its signature significance measure for statistical hypotheses. In contrast, traditionally,
the Bayesian school offers the Bayes Factor as its own alternative to a significance
measure. These two were the leading schools of statistical science during the XX
century, and each one of them has developed its own inference procedures for testing
hypotheses.

Nevertheless, the mathematical, statistical, and logical properties of e-values, p-
values and Bayes Factors are very different, and so are the properties of their corre-
sponding hypothesis tests and related inference methods. Therefore, the epistemo-
logical frameworks used by these three programs are also quite different, for they
have to accommodate discrepant properties of the aforementioned significance mea-
sures. Nowadays, p-values are usually presented embedded in an epistemological
framework based on Popperian falsificationism, while Bayes Factors are usually pre-
sented in the context of stochastic decision theory (optimal gambling strategy). Stern
and Pereira (2014) analyze the contrasting mathematical properties of each of the
three aforementioned significance measures and the consequential differences be-
tween corresponding statistical inference procedures. Stern (2011a,b) analyze the
contrasting characteristics of the corresponding epistemological frameworks, devel-
oped to harbor and support their specific inference methods.
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The objective cognitive constructivism epistemological framework has its origins
in cognitive constructivism as developed by Maturana and Varela (1980), Foerster
(2003), Foerster and Segal (2001), Krohn and Küppers (1990), Zeleny (1980), and
many others. Nevertheless, the objective character of the former sets it apart from
its predecessors. Stern (2007a,b, 2008, 2014) give detailed analyses of the similar-
ities and differences between these frameworks. Stern (2015) considers some fre-
quent questions concerning the similarities and differences between objective cogni-
tive constructivism and the epistemological framework developed by the philosopher
Willard van Orman Quine.

Statistical textbooks tend to de-emphasize epistemological foundations and play
down the philosophical commitments made by each statistical school, presenting
theory and methods in the most pragmatical way possible. Nevertheless, the devel-
opment of each of the aforementioned statistical schools and their programs was
strongly influenced or even guided the these philosophical commitments. Stern
(2018) analyzes the work of Karl Pearson (1857-1936), founder of the frequentist
school, and the importance of his philosophical commitment to inverted-Spinozism,
a form of transcendental idealism, to the development of the theory, methods and
language of classical statistics. The same article analyzes the objections of K.Pearson
to the epistemological views of Paul Volkmann (1856-1938), who presents his ideas
based on the metaphor of the scientific system as a vaulted arch. Furthermore, Stern
(2018) argues that Volkmann’s vaulted arch metaphor could be seen as a distant fore-
runner of cognitive constructivism. A somewhat related metaphor, the Arch of Knowl-
edge, is developed by David Oldroyd (1986), who uses this metaphor as his guideline
to conduct a systematic study of history, philosophy and methodology of science. The
e-value and objective cognitive constructivism research program has a long way to
go until a similar wide-range systematic comparison with alternative epistemological
frameworks is available. Nevertheless, the first steps in this long journey have already
been taken, focusing on the immediate vicinity of epistemological frameworks most
relevant to modern statistical inference.

8. Final Remarks

Trying to understand our quest for knowledge, specially in the realm of exact sciences,
this article explored two main metaphors, namely, Science as provider of sharper im-
ages of our world, and von Foerster’s metaphor of Objects as tokens for eigen-behaviors.
We tried to show how these metaphors can be helpful in building an integrated and
coherent perspective of the development of a scientific discipline, and in the un-
derstanding of its ordinary activities. However, as it is often the case when a new
metaphor is presented, some inherent limitations of metaphorical argumentation in
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general, and those we used in particular, are brought to light and should be examined.
We shall also consider the possibility of extending the application of the epistemo-
logical framework developed in his article to other areas, like human sciences. Those
issues are discussed in the next subsections.

Metaphoric and Polysemic Objective Ontologies

As shown in Sections 6, some key objects of the standard ontology of optical science
directly correspond to elements in the system of eigen-functions used to describe
the eigen-solutions of a vibrating disc plate, for example, the ideal forms of lenses
and mirrors, and their classical aberrations. As shown in Stern (2008, 2014, 2017a),
some key objects of the standard ontology of musical science directly correspond to
elements in the system of eigen-functions used to describe the eigen-solutions of a
vibrating string, for example, musical notes in classical scales. In either case, von
Foerster’s metaphor – objects are tokens for eigen-behaviors – can be applied quite
literary.

Other words of these ontologies stand for compositional rules and for ways to use
the preceding objects to accomplish specific goals. For example, Keplerian (paraxial)
optics give us precise prescriptions to align and collimate the distance between lenses
and mirrors in a telescope in order to obtain well-focused images, see Appendix A and
previous sections. In the same way, musical science has precise prescriptions on how
to synchronically compose separate notes into consonant or dissonant chords, and
how to diachronically arrange them into melodic lines. These compositional rules and
their applications also express the four essential properties of eigen-solutions, namely,
stability, precision, separation and composition. Nevertheless, the correspondence
between these words and underlying systems of eigen-solutions is more remote or
indirect. Hence, von Foerster’s metaphor can only be applied in a more abstract or
figurative sense. Even farther removed is the connection of the underlying eigen-
solutions with the variety of means and methods (and the words and language used
to describe them) used by artisans and technicians in the craft of building optical or
musical instruments so that they perform as expected, that is, so that they can be
used to play the fine tuned music we want to hear or to render the sharp images we
want to see.

Furthermore, in historical development optical instruments and their manufac-
turing techniques, generations of artisans have acquired practical knowledge about
objects in those ontologies long before the mathematics used to formally describe
a system of underlying eigen-functions was available, see King (1955) and the bib-
liography therein. In fact, the other way around, it is possible to see such math-
ematical formalisms as languages developed to describe, in the best way we cur-
rently can, some peculiar patterns that emerge in our ways of recurrent interaction,
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patterns deemed peculiar for exhibiting the aforementioned essential properties of
eigen-solutions. In this regard, see Stern (2011a) for a discussion of Árpád Szabó and
Imre Lakatos’ views of mathematics as a quasi-empirical science.

The observations in the last paragraph make us contemplate, once again, the cir-
cular, recursive and, at least to some degree, polysemic and figurative nature of the
metaphors and associated concepts used in the Objective Cognitive Constructivism
epistemological framework. This situation may be accompanied by sensations rang-
ing from slightly discomfort to lightheadedness or strong vertigo. Hence the question:
Is this situation unavoidable?

Would it not be possible to find a steady vantage point or an absolute reference
frame from which to observe the evolution of a scientific discipline, or even to get a
snapshot of its current state of affairs, in a way that dispenses intrinsically circular
definitions, avoids reference to recursive processes, and evades the use of polysemic
concepts or metaphorical language? According to the constructivist framework, the
answer is in the negative. Any attempt to secure such a privileged position would not
only be futile, but essentially misconceived. Nevertheless, if the former task is hope-
less, the general situation is promising for, as stated in one of the opening quotations
of this article:

You can dance in a hurricane, but only if you are standing in the eye!

From the perspective of Objective Cognitive Constructivism, the best available
vantage point is the eye of the hurricane, in analogy to the central point of the pro-
duction diagrams depicted at Figures 9 and 10. Paradoxically, the very center of the
spinning whirlwind is the quiet place where recursive eigen-solutions of those pro-
duction processes can emerge and be sustained.

Furthermore, as discussed at Sections 4 and 7, each one of the aforementioned
production contexts is equipped with well-defined quantitative measures specifically
designed to evaluate how well emerging eigen-solutions manifest their required es-
sential properties. In this way, such measures act as technical touch-stones tailor-
made to the task of accessing the objectivity of those entities and corresponding terms
in the ontology in which they are represented. Such a steadfast ontology gives us a
firm grip on the world, allows us to “carve nature at its joints” or, at least, accord-
ing to the Objective Congnitive Constructivism epistemological framework, provides
the best anchors to reality that we can possibly have. See Palma (2016) and Stern
(2007b, 2011a and 2014) for further discussion of some topics briefly presented in
this subsection.
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Figure 17: Stronger/ weaker tokens for sharper/ blurrier eigen-values

Eigen-Solutions and Human Sciences

von Foerster’s metaphor – Objects are tokens for eigen-behaviors – stresses the role of
an interacting agent. In this context, recognizable objects (and their names) stand for
invariant patterns that emerge in the agent’s recurrent forms of interaction with his
environment. In the case of economy, sociology, political and legal studies, psychol-
ogy, and other human sciences, the agents responsible for those interactions are (in
different degrees) conscious or self-aware of their role in the process, and organized
in complex patterns of interaction, introducing additional and interesting aspects to
be considered.

Let us examine, as a familiar example, prices of commodity goods and related
assets in an economic system. Such prices are nominated in a currency that, in turn,
can be denominated by money, like the coins in Figure 17. All these coins have cir-
culated over a common geographic area in a time period spanning less then a cen-
tury. Among these, the Euro (left, issued in 2014, featuring Galileo) is considered a
strong currency; the East-German Mark (center, 1971, featuring Kepler), a weaker
one; and the notgeld or emergency money issued by the city of Halle at the inter-
bellum hyper-inflation period (right, 1920, displaying moon and stars), the weakest.
Why this hierarchy? Because of how well the eigen-values they denominate (prices in
the respective economies) manifest the essential properties of an eigen-solution, see
Debreu (1972) and Ingrao and Israel (1990) for further details. Cerezetti and Stern
(2012) consider how specific measures of the precision, stability, and effectiveness
of composition rules for prices of fundamental commodities and derivative contracts
in financial markets can be used to guide either speculative trading or regulatory
intervention in the same markets.

Stern (2018a) makes some incursions exploring applications to human sciences
of the epistemological framework developed in this article in the area of empirical
legal studies; in the near future we intend to pursue similar lines of research. We are
particularly interested in the analysis and acceptability of causal explanations based
on Niels Bohr complementarity principle in the context of economics, legal studies
and psychology.
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Historiographical and Pedagogical Disclaimers

In this article I made use of some narratives concerning the historical development of
science and technology, and I have also described some pedagogical materials used
for teaching science to children and adolescents. Nevertheless, I am not an historian,
and my teaching experience is limited to the university. Therefore, the use I made
of the aforementioned examples should be taken with a grain of salt: Regarding his-
torical narratives, they often reflect common knowledge, and are not intended as
position statements in the fields of historiography or history of science; see Kuukka-
nen (2012), Martins (2001), Sauer and Scholl (2012). Regarding pedagogical mate-
rials, they belong to the long-gone time of my youth, the way I describe them reflects
mostly my own experiences, and these are not intended as position statements in the
field. Development of pedagogical materials appropriate for classroom requires an
holistic approach and coordinated team effort, see for example Benfey et al. (1964),
Fuller et al. (1978), Haber-Schaim et al. (1976), Malm et al. (1963), Pimentel et al.
(1963) and Welch et al. (1968). Moreover, effective pedagogical projects should take
into account and be adapted to the cultural background and social environment of
intended students.
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Notes
1Volo, mi Keplere, ut rideamus insignem vulgi stultitiam. Quid dices de primariis huius

Gimnasii philosophis, qui, aspidis pertinacia repleti, nunquam, licet me ultro dedita opera
millies offerente, nec Planetas, nec [Lunam], nec perspicillium, videre voluerunt? Verum ut
ille aures, sic isti oculos, contra veritatis lucem obturarunt. Letter of 19/08/1610 from Galileo
to Kepler (Opere, v.X, Letter 379, p.421-423).

2Questo è quello, dico, c’ha dispiacciuto al S.r Galilei, ch’ella non habbia voluto vederle.
Rispose: Credo che altri che lui non l’habbia veduto; e poi quel mirare per quegli occhiali
m’imbalordiscon la testa: basta, non ne voglio saper altro. Letter of 29/07/1611 from P.
Gualdo to Galileo; OG v.XI, doc.564, p.139–40.
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3[Clavio] disse . . . delle quattro stelle, che se ne rideva, et che bisognierà fare uno ochiale
che le faccia e poi le mostri, et che il Galileo tengha la sua oppinione et che egli terrà la sua.

4In astronomiae parte Optica ut quid in simplicibus perspicillis accideret luculenta demon-
stratione geometrica redderem expeditum. . . . adeoque & inter ipsos vulgo circulatos tubos
bilentes, & inter tuam Galilaee machinam, qua coelum ipsum terebrasti: sed nitor hic fidem
incredulis facere instrumenti tui.
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Appendix A: Kepler’s Paraxial Optics,
Presented in Modern Matrix Notation

When analyzing the behavior of a given system, it is often a good idea to try an input-
output approach combined with linear approximations. An input-output approach
seeks a descriptive functional relation between relevant input and output variables
for the system in study. In a linear approximation, each output variable is described
as a linear combination of the input variables or, equivalently, the input and output
vector variables, v and w, are related by a linear (matrix) operator, w = Av. In this
appendix we follow Kleinfeld and Tsai (2004), see also Pedrotti et al. (2017, Ch.18),
and Gerrard and Burch (1975, Ch.1 and 2).
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Figure 18: Keplerian or paraxial optics

In the Transfer (or propagation) Matrix approach to optics, the optical system is
described by the trajectory of light rays in the system, see Figure 18. The coordinate
x locates the ray as it passes through the system, and vector variables

�

y α
�t

describe the ray’s height and the angle (in radians) relative to axis x .
The action of an optical elements is modeled by a linear operator, represented by

a matrix A, that is,
�

y ′

α′

�

= A

�

y
α

�

=

�

A1,1 A1,2
A2,1 A2,2

��

y
α

�

=

�

A1,1 y + A1,2α

A2,1 y + A2,1α

�

.

Taking the standard basis
�

1 0
�t

and
�

0 1
�t

as input vectors, we notice
that the first column of A describes the action of the optical element over a light ray
parallel to x at unitary height, while the second column of A describes the action of
the optical element at zero height and unitary inclination.

Moreover, in the transfer matrix approach to optics, C , the transfer matrix of a
system composed by two optical elements, A and B (aligned left to right), is obtained
by multiplying (right to left) the matrices corresponding to its constituent elements.

C = BA=

�

B1,1A1,1 + B1,2A2,1 B1,1A1,2 + B1,2A2,2
B2,1A1,1 + B2,2A2,1 B2,1A1,2 + B2,2A2,2

�

Linear ray optics offers good approximations to real optical systems as long as
the following hypotheses hold: (1) Small angles, that is, θ << 1, so that sinθ ≈
tanθ ≈ θ ; (2) Small heights (paraxial rays), that is, y << r, where r is the radius
of spherical elements to be specified in the sequel; (3) Thin elements, that is, the
change in height of a light ray while traveling inside an optical element is negligible.
Assuming the aforementioned conditions to hold, we derive the transfer matrices for
a few optical elements and simple optical systems.

D(d) – Distance d simple translation: A light ray traveling through an homoge-
neous medium follows a straight line. Traveling a distance d at angle α changes the
ray’s height by d tanα≈ dα.
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F(n, n′) – Flat (orthogonal to x) interface from medium n to n′. Crossing a flat
interface causes no change in the height of a ray, while its angle changes according to
the linear version of Snell-Descartes law, that is, sinθ ′ = (n/n′) sinθ ⇒ θ ′ ≈ (n/n′)θ .

D(d) =

�

1 d
0 1

�

; F(n, n′) =

�

1 0
0 n/n′

�

.

S(n, n′, r) – Spherical interface or radius r (where r is positive/ negative for a con-
vex/ concave interface). First, notice that a ray of zero height an angle α behaves as
passing through a flat interface, giving us the second column of matrix S. Meanwhile,
at the point a ray with unit height and parallel (α= 0) to the axis meets the interface,
the angle between incoming ray and the spherical radius is θ = arcsin 1/r ≈ 1/r. Us-
ing the linear version of Snell’s law, we get θ ′ = (n/n′)θ . Finally, using the identity
α′ = θ ′ − θ , we get

S(n, n′, r) =

�

1 0
(n− n′)/r n′ n/n′

�

.

M(r) – Mirror of radius r (where r is positive/ negative for a concave/ convex
spherical mirror). Arguments similar to the ones used in previous case, give us the
transfer matrix for the spherical mirror.

M(r) =

�

1 0
2/r 1

�

.

We can now obtain the transfer matrices of some simple optical systems by multi-
plying (right to left) the transfer matrices of their constituent elements (left to right).

L(n, n′, r1, r2) – Lens made by a thin sequence of convex and concave interfaces
(r1 > 0 and r2 < 0), with exterior medium n and internal medium n′. It is easier to
write this matrix as L( f ), using as an auxiliary variable the lens’ focal distance, f ,
defined as (1/ f ) = (1/r1 − 1/r2)(n′ − n)/n,

L(n, n′, r1, r2) = S(n′, n, r2)S(n, n′, r1) =

�

1 0
−1/ f 1

�

= L( f ) .

T ( f1, f2, d) – Telescope using two thin lenses with focal distances f1 and f2 sep-
arated by a distance d.

T ( f1, f2, d) = L( f2)L( f1) =

�

1− d/ f1 d
(d − f1 − f2)/( f1 f2) 1− d/ f2

�

.

C( f1, f2) – Collimated telescope, namely, T ( f1, f2, d) adjusting d = f1 + f2. The
matrix element A1,1 = − f2/ f1 gives the collimated telescope’s magnification coeffi-
cient for the image of a distant object; the negative sign indicating an inverted image.

C( f1, f2) =

�

− f2/ f1 f1 + f2
0 − f1/ f2

�

.
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Appendix B: Principle of Least Time

Consider a beach with shore line represented by x = a, in the standard Cartesian
plane. A lifeguard, at position (x , y) = (0,0), spots a person drowning at position
(x , y) = (a+ b, d). While on the athletic track the lifeguard car can run at top speed
c, on the sand it can run at speed c/ν1. Once in the water, the lifeguard can only
swim at speed c/ν2, 1 < ν1 < ν2. Letting (x , y) = (a, y(a)) be the point where he
enters the water, what is the optimal value y(a) = z if he wants to reach position
(a+ b, d) as fast as possible?

Since the shortest path in an homogenous medium is a straight line, the optimal
trajectory is a broken line, from (0, 0) to (a, z), and then from (a, z) to (a+ b, d). The
total travel time is J(z)/c, where

J(z) = ν1

p

a2 + z2 + ν2

Æ

b2 + (d − z)2 .

Since we want J(z) at a minimum, we set

dJ
dz
= ν1

−2z

2
⎷

a2 + z2
+ ν2

−2(d − z)

2
p

b2 + (d − z)2
= 0 ,

so that, we should have
ν1 sin(θ1) = ν2 sin(θ2) .

Professional lifeguards claim that this simple model can be improved by dividing
the sand in a dry band, V1, and a wet band, V2, and the water in a shallow band, V3,
and a deep band, V4, with respective different media ‘resistance’ indices, ν1,ν2,ν3,ν4,
satisfying ν4 > ν3 > ν1 > ν2 > 1. Although the solution for the improved model can
be similarly obtained, a general formalism to solve ‘variational’ problems of this kind
exists which is known as the Euler-Lagrange equation. For intuitive introductions see
Krasnov et al. (1973), Leech (1963) and Marion (1970).
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