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Abstract. In this paper a proposal by Henkin of a nominalistic interpretation for second
and higher-order logic is developed in detail and analysed. It was proposed as a response to
Quine’s claim that second and higher-order logic not only are (i) committed to the existence
of sets, but also are (ii) committed to the existence of more sets than can ever be referred
to in the language. Henkin’s interpretation is rarely cited in the debate on semantics and on-
tological commitments for these logics, though it has many interesting ideas that are worth
exploring. The detailed development will show that it employs an early strategy of using sub-
stitutional quantification in order to reduce ontological commitments. It will be argued that
the perspective adopted for the predicate variables renders it a natural extension of Quine’s
nominalistic interpretation for first-order logic. However, we will argue that, with respect to
Quine’s nominalistic program and his notion of ontological commitment, (i) still holds and
thus Henkin’s interpretation is not nominalistic. Nevertheless, it will be seen that (ii) is ad-
dressed successfully and this provides further insights on the so-called “Skolem Paradox”.
Moreover, the interpretation is ontologically parsimonious and, in this respect, it arguably
fares better than a recent proposal by Bob Hale.
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1. Introduction, definitions and overview

Since Quine’s attempts to dismiss second-order logic (1947; 1948), claiming it re-
quires the existence of abstract objects and that it is no more than “set-theory in
sheep’s clothing”, many papers have been published on the meaning of the second-
order quantifiers, their existential commitments and on the appropriate semantics
for second-order logic.

Recently, some discussion on neologicism renewed the debates on this topic. In
(2013) and (2019) Hale presents an interpretation for second-order logic, one mo-
tivation of which is to address Quine’s claim that such logic, being no more than
set theory in sheep’s clothing, has “staggering existential assumptions”. Hale’s inter-
pretation contemplates models whose higher-order domains contain all and only the
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subsets of the domain that are definable, both in the object language and in the meta-
language. According to him (2019, p.2649), Henkin’s general semantics would not
fit such a framework because it includes too much: it allows undefinable subsets to be
in the higher-order domains. Nevertheless, there is a stricter interpretation proposed
by Henkin himself to address Quine’s critiques concerning the ontological commit-
ments of second-order logic. Such proposal is rarely cited in these discussions on the
subsequent decades. However, it contains many interesting ideas that are worth ex-
ploring. For example, in this interpretation the quantified predicate variables have no
range of values, but are to be replaced by appropriate predicates of a given language.
This would correspond to an interpretation having models whose higher-order do-
mains contain all and only the relations that are definable in the object language.
Thus, Hale’s interpretation for second-order logic has a strong competitor in coun-
tering Quine’s claims, even more so if it is considered that Henkin’s interpretation
was intended to be nominalistic.

Henkin’s few publications on philosophical themes (1953; 1955; 1956) were on
nominalism and higher-order logic. His discussion on nominalism basically dialogues
with Quine and Goodman’s works of the time, specially (Quine 1947) and (Goodman
& Quine 1947), concerning the nominalistic reconstruction and/or understanding
of concepts and formal systems for logic and mathematics. Though less explicit in
(1966), in his three papers Henkin’s main preoccupation is to defend the feasibility
of a nominalistic interpretation for higher-order logic, the analysis of which will be
the concern of the present study.

1.1. On nominalism

Nominalism is an age-old issue in philosophy and could be said to revolve around
two pairs of opposing notions: that of abstract/concrete and that of infinite/finite.1

An abstract entity will be considered here, as usual, as something which is either
causally inert or does not exist in space-time. The paradigmatic examples of abstract
entities would be the objects of mathematics, as the natural numbers. A concrete
entity is one that has causal efficacy and exists in space-time. The paradigmatic ex-
amples of concrete entities are the so-called physical objects.

As for the pair infinite/finite, the usual distinction between actual and potential
infinity will not be made, as it does not appear in the works to be explored. Precise
definitions for these terms and their feasibility from the nominalistic viewpoint will
be explored later.

Nominalism will be considered here as a position which rejects the existence of
abstract entities and the existence of infinitely many objects. In the sequence, we
examine the reasons one would have for embracing any nominalistic project.
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1.2. Nominalistic projects

One can engage in a nominalistic project concerning some discipline D and an asso-
ciated theory TD, having mainly three purposes in mind (adapted from (Burgess &
Rosen 1997)):

(1) Answer the philosophical question/challenge:

(a) Is it possible to develop D successfully, without appealing neither to ab-
stract entities nor to infinitely many objects?

(2) Answer (a) positively, proposing a nominalistic theory T n
D for D, and defend

further that

* the ontological commitments of TD are really just those of T n
D .

(3) Answer (a) positively, proposing a nominalistic theory T n
D for D, and defend

further that

* the practitioners of D should abandon TD and adopt T n
D .

One engages in a nominalistic project with purpose (3) mainly claiming that we
are finite beings and, as regards the size of the universe, the empirical evidence that
we have would support better the thesis that the universe is finite, than the opposite
thesis. Thus the assumption of the existence of infinitely many things in the universe
cannot be properly justified. Besides this, one usually appeals to some sort of causal
theory of knowledge, arguing that we can only have knowledge of things causally
related to us.2 Such views on knowledge and infinity can also be behind (1) and (2),
though not necessarily.

Quine and Goodman were important proponents of nominalistic projects of the
sorts specified above. Prior to their important joint work (Goodman & Quine 1947),
dealing with a nominalistic interpretation of mathematics, Quine had published a
paper (1947) about nominalistic interpretations of logics. In these works they prob-
ably did not have only purpose (1) in mind. The approach in (Quine 1947) could
be seen as having the aim (2) (with respect to some logics). Whereas in (Goodman
& Quine 1947) an explicit refusal of abstract objects and infinity (presumably due
to the reasons presented above) motivates the elaboration of a nominalistic syntax,
intended to enable one to regard the statements of mathematics as rule-governed but
otherwise meaningless strings of symbols. In this sense, they could be seen as having
the aim (3).

Henkin proposed in a series of papers (1953; 1955; 1966) nominalistic interpre-
tations of some concepts, such as “there are more As than Bs”, or “x is an ancestral
of y over the relation R”. Most importantly, he proposed a nominalistic interpreta-
tion of higher-order logic. In the last of these papers Henkin emphatically defends a
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“mathematics first” position and that foundational discussions would be important
but secondary to the actual mathematical activity. Thus, one may better understand
his nominalistic endeavors under the key (1) or (2).

1.3. Overview of the paper

Firstly, we expose Quine’s (1947) arguments as to why the question (a), both taking
D as propositional and first-order logic, can be given a positive answer, and why this
does not happen with respect to second and higher-order logic. Some issues with this
argument are explored and Henkin’s ideas for a nominalistic interpretation of second
and higher-order logic are developed in detail.

In the sequence, the proposal is assessed and it is argued that, with respect to
Quine’s framework for ontological commitment, Henkin’s interpretation of second-
order logic (and thus the extension for higher-order) ends up not being nominalistic.
Hence, it does not provide a positive answer to (a) either. The interpretation would fit
instead in a wider perspective, that pursues ontological parsimony whenever possible
and gives priority to well-entrenched entities, over less entrenched ones.

Finally, Hale’s arguments regarding the ontological commitments of second-order
logic and his proposed interpretation are briefly presented and compared with
Henkin’s.

2. Quine’s nominalistic interpretations of logic

In order to argue that a logic can or cannot be given a nominalistic interpretation,
it is necessary to have a criterion for measuring its ontological commitments. In the
sequence the criterion used by Quine in his considerations on logics is presented, and
its application for propositional, first, second and higher-order logic is exposed.

2.1. Ontological commitment

In the thirties and forties, Quine wrote a series papers on logic and ontology (e.g.
1934; 1943; 1947; 1948; 1966), which ended up revitalizing the discussions on on-
tology. In (1943) there appeared his famous slogan “to be is to be the value of a
variable”, and in (1948) he famously developed these ideas as a way to approach on-
tological disputes. In order to assess the ontological commitments of a given theory,
many versions of a criterion were proposed, less explicit in the first works and more
so in the later. In (1934; 1943; 1947; 1966) the criterion could be said to be:

Definition 2.1.0.1 (Ontological commitment)

(OC)
The ontological commitments of a theory T formulated in quantifica-
tional language resides in the intended values of its variables.
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Quine attempted to give a more precise formulation of the criterion in later
works.3 Such precise renderings were meant to be understandable purely extension-
ally, despite the expressions “has to be” and alike appearing in them. However, it was
not long before it was realized that a precise and adequate extensional criterion for
ontological commitment was unlikely to be found. It seems that later in life, Quine
preferred to regard the notion of ontological commitment as an intuitive one, dis-
pensing with formal attempts to capture it.4 Indeed, it is on these informal grounds
that Quine applies his OC to the various logics in (1934; 1947; 1966).

2.2. Propositional and first-order logic

In order to assess the minimum ontological commitments of propositional and first-
order logic, Quine (1947) makes some proposals as regards the understanding of
their respective languages.5

In the case of propositional language, instead of treating the propositional sym-
bols as variables having propositions as their range, they are to be understood sche-
matically, not having a range at all. In this way, they would be merely placeholders
to be replaced by sentences of some specific language. The idea is that the mean-
ingful use of sentences of some language does not commit one to the existence of
propositions.

By the same token, in the case of first-order language the predicate symbols do
not need to be treated as variables, having properties or sets as their range; nor need
they be treated as names for specific properties or sets. The predicate symbols are also
to be understood schematically, to be replaced by actual predicates of some language.
As in the above case, to meaningfully use a predicate is not necessary to assume the
existence of any abstract entity as its referent.6

Quine (1947, p.75) claims that the logics obtained from these languages by means
of the usual axioms and rules of inference are not committed to abstract entities.

2.3. Second and higher-order logics

Let us consider now Quine’s analysis of the ontological commitments of logics of
second-order, the same analysis applies to the higher-order case. Let M2 be an exten-
sion of first-order language having quantified predicate variables of any arity. There
would be at least two candidates for being values of these variables: either proper-
ties (intensional) or classes (extensional). On the grounds of having clearer identity
conditions, classes are chosen as the preferred values of second-order variables.

Thus, applying OC, Quine concludes that any second-order language (and thus
the corresponding second-order logic) is committed to the existence of classes. Apart
from the eventual problems issuing from such a commitment, he refers (1947, p.78)
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to Cantor’s theorem to argue that there would be a further problem: if one assumes
there is a realm of classes through which the second-order variables of M2 range, one
would also have to accept that there are classes which cannot be referred to using M2.
This would happen because, by Cantor’s theorem (which is provable in second-order
logic), there would not be enough predicates in the language for covering them all.
Quine says (ibid.):

Such extension of quantification theory (. . . ) would seem a very natural way
of proclaiming a realm of universals —classes— mirroring the predicates or
conditions that can be written in the language. Actually, it turns out to pro-
claim a realm of classes far wider than the conditions that can be written in
the language. This result is perhaps unwelcome, for surely the intuitive idea
underlying the positing of a realm of universals is merely that of positing
a reality behind linguistic forms. However the result follows from Cantor’s
proof that the classes having objects of any given kind as members cannot
be paired off exhaustively with such objects individually. Cantor’s proof can
be carried out within the extension of quantification theory under consider-
ation. And from his general result it follows that there must be classes, in
particular classes of linguistic forms, having no linguistic forms correspond-
ing to them.

Summing up, Quine’s argument for undermining second-order logic rests on two
statements:

(i) second-order logic is committed to the existence of sets and

(ii) second-order logic is committed to the existence of more sets than can ever
be referred to by predicates of the language.

The justification for (i) is OC together with the objectual interpretation of second-
order quantifiers, that is, the interpretation that second-order quantifiers apply to
variables having ranges of values. The justification for (ii) is Cantor’s theorem, to-
gether perhaps with a “universal language conception of logic”, to use Van Hei-
jenoort’s (1967) terms.7 In the next section Henkin’s attack on this argument will
be explored.

3. Henkin’s nominalistic interpretation for higher-order
logics

The claims (i) and (ii) above hinge on a particular semantics for second-order logic,
so one can tackle them by offering a different semantics. This is what Henkin (1953)
did, by proposing to interpret the higher-order quantifiers in a certain substitutional

PRINCIPIA 26(2): 233–255 (2022)



Henkin on Nominalism and Higher-Order Logic 239

fashion. As in the interpretation proposed by Quine for the first-order case, the predi-
cate variables are understood schematically, not having a range of values in the usual
sense: they are placeholders for predicates of a given language. Then, the formulas
∀Xφ and ∃Xφ are taken to mean “φ holds when all admissible predicates are substi-
tuted for X ”, and “φ holds when some predicates are substituted for X ”, respectively.

This proposal is an early one adopting substitutional quantification to address
issues related to ontological economy.8 The main step of the interpretation is the
construction of a language to furnish the predicates to be substituted for the predicate
variables. It is shown that under this interpretation (ii) fails. As regards (i) the idea is
that this construction would only use “nominalistic sets” or aggregates, together with
an idealized employment of infinity. We explore below the argument questioning (ii)
and in the sequence the interpretation intended to attack (i) is developed.

3.1. Cantor’s theorem and general models for higher-order logics

Henkin’s argument is that Cantor’s theorem has its usual meaning only when second-
order logic is interpreted in the standard semantics where, for each arity n, the re-
spective second-order domains are taken to be the full power-set of the n-fold domain
of individuals. If one rejects this semantics, as the nominalist would, Cantor’s theo-
rem cannot be used. A formula representing the theorem in the standard semantics,
such as

(γ) ¬∃F∀X∃x∀y(F(x , y)↔ X (y))

remains valid in the semantics to be developed below,9 but there is something very
different now as regards its meaning. In the model-theoretic version (section 4.2),
the cardinality of the higher-order domains may not exceed the cardinality of the
domain of individuals. This situation is likened by Henkin (1953, p.21) to Skolem’s
paradox and can be explained in the usual model-theoretic terminology as follows.

Let B be a model 〈B, 〈Bn〉n≥1, . . .〉, where B is a domain and, for n = 1, 2,3, . . .,
Bn are the second-order domains, such that Bn ⊆ P (Bn), where P is the power-set
operation and Bn is the n-fold Cartesian product of B (these operations are supposed
to be defined by the background set theory). Define B′ to be an expansion of B when-
ever B′ can be obtained from it by adding new n-ary relations on members of B into
the second-order domains Bn. A formula φ is persistent if φ is true in B′ whenever it
is true in B, for B′ an expansion of B. The paradoxical situation mentioned above is
due to the fact that the formula (γ) expressing Cantor’s theorem is not persistent. If
(γ) is true in a model B with first-order domain B, it holds that there is no bijective
mapping from B to B1. However, it may be that a formula expressing the existence of
such a mapping is true in an expansion B′ of B. What happens in models such as B
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is that not all subsets (as defined by the background set-theory) of the Bn’s are con-
tained in the Bn’s. Therefore in these models, all universally quantified second-order
formulas turn out not to be persistent. The relations available in the higher-order do-
mains are no longer fixed by the background set-theory, they are model-dependent.10

In the semantics presented in the next subsection, the predicates which will re-
place the second-order variables will be taken from a certain language N. As (γ)
is satisfied, from an “internal” viewpoint, there will be no one-to-one pairing of in-
dividuals and predicates, while from an “external” viewpoint there will be at most
denumerably many predicates and there might be such a mapping.

The exposition of this semantics given in (Henkin 1953, pp.22-23) is sketchy and
is not clear what is the exact proposal for the interpretation of second-order formu-
las. The presentation provided below is an attempt to develop Henkin’s ideas more
precisely, and allow a better assessment of this approach as regards the nominalistic
agenda to which he wanted to contribute.

3.2. The second-order case

Consider the following definitions for the syntax of the second-order language. The
predicates involved in the definitions will be highlighted in small caps when men-
tioned for the first time, and may be abbreviated with acronyms. They are to be
applicable to inscriptions, which are taken to be concrete objects. Except where it is
indicated otherwise, their adequacy for the nominalist viewpoint follows from the
constructions in (Goodman & Quine 1947, §5ff). In the sequence, unless otherwise
indicated, the letters from i to n stand for arbitrary numerals greater or equal to 1.

• x1, x2, . . . and c1, c2, . . . are INDIVIDUAL VARIABLES and INDIVIDUAL CONSTANTS,
respectively.

• X n
1 , X n

2 , . . . and Rn
1, Rn

2, . . ., for n= 1,2, . . ., are RELATIONAL VARIABLES and RE-
LATIONAL CONSTANTS OF n PLACES, respectively.

Let φ be a WELL FORMED FORMULA of any of the languages to be defined below and
let Γ be a collection of such objects.

• Define FR(φ) as the sequence 〈ξ1, . . . ,ξk〉 of FREE VARIABLES IN φ, where
each ξi , 1≤ i ≤ k, is either an individual or relation variable.

• Where ξ j is an individual or relation variable, and ξi is any term of the same

category, define (φ)ξi
ξ j

as the SUBSTITUTION OF ξi FOR THE FREE OCCURRENCES

OF ξ j in φ. If ξ j is free in φ and ξi is a variable, then ξi remains free in (φ)ξi
ξ j

and thus the variables in φ may be renamed accordingly.
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• A collection Γ of well formed formulas IS WITNESSED whenever:

– if ∃x iφ belongs to Γ , then (φ)ck
x i

belongs to Γ , for some individual con-
stant ck;

– if ∃X n
i φ belongs to Γ , then (φ)

Rn
k

X n
i

belongs to Γ , for some relational con-

stant Rn
k.

Now we define a sequence of languages.

(L) Let L be the pure first-order language, that is, first-order language only with
schematic predicate symbols and without any individual constants (which is
already supposed to have a nominalistic interpretation).

(M2) Let M2 be the pure second-order language, defined as follows:

• The predicate “to be a TERM OF M2” (TERMM2
) is defined as:

– if x i is an individual variable, then x i is a TERMM2
;

– “TERMM2
” does not apply to anything else.

• The predicate “to be a WELL FORMED FORMULA OF M2” (WFFM2
) can be

defined as follows:11

– if X n
j is a n-ary relational variable and t1, . . . , tn are TERMM2

, then

X n
j t1 . . . tn is a WFFM2

;

– if X n
j is a relational variable and φ is a WFFM2

, then ∀X n
j φ is also a

WFFM2
;

– as usual for other operators and nothing else is a WFFM2
.

(M2′) Let M2′ be the following extension of the language M2:

• The predicate “to be a TERM OF M2′” (TERMM2′
) holds for all objects for

which TERMM2
holds and, additionally:

– if ci is an individual constant, then ci is a TERMM2′
;

• The predicate “to be a WELL FORMED FORMULA OF M2′” (WFFM2′
) holds

for all objects for which the corresponding predicate of M2 holds, addi-
tionally:

– if Rn
i is a n-ary relational constant and t1, . . . , tn are TERMM2′

, then

Rn
i t1 . . . tn is a WFFM2′

.

• The predicate “to be a CLOSED WELL FORMED FORMULA OF M2′” (CWFFM2′
)

is defined as expected.
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(N) Let the language N be an extension of L whose vocabulary includes new in-

dividual constants u1, u2, u3, etc. Moreover, for each φ which is WFFM2′
such

that FR(φ)=〈x i1 , . . . , x in〉, the vocabulary of N includes the n-ary first-order
relation constant F n

φ
. The predicates TERMN and WFFN are defined as expected.

Finally, we define some formal systems with respect to the above languages.

(M 2) LetM 2 be the logic formed by the language M2 and the usual AXIOM SCHEMAS

and/or RULES OF INFERENCE.12

(M 2′
ω ) Let ψ1,ψ2,ψ3, . . . be an ENUMERATION OF FORMULAS THAT ARE CWFFM2′

. By
the usual method, taking the formulas ψn as axioms, one obtains successive
collections of formulasM 2′

n that are CONSISTENT WITH RESPECT TO M 2 and
witnessed.13 Each M 2′

n , for n = 1,2, 3, . . ., is thus a finite collection and the
corresponding predicates “TO BE AN AXIOM OFM 2′

n ” can be defined for each n.
Define nowM 2′

ω as the system having as axioms all formulas which are axioms
ofM 2′

n , for n= 1,2, 3, . . .. Such system is MAXIMALLY CONSISTENT.14

The collection of formulasM 2′
ω must be infinite and this is naturally a delicate issue

of this interpretation. We will analyse later Henkin’s argument to the effect that the
corresponding predicate “TO BE AN AXIOM OFM 2′

ω ” could still qualify as nominalistic.
The interpretations for N and the higher-order languages are given in the se-

quence. Their quantifiers are interpreted substitutionally, however, the quantifiers of
the meta-theory are still meant to be objectual, thus, OC still applies to them.

The interpretation for the language N

N is interpreted by I as follows:

• The terms and formulas from L by hypothesis already have a nominalistic
interpretation;

• For terms t i , set I(t i) = ci , where ci an individual constant;

• Let F n
φ

t i1 . . . t in be a WFFN, such that FR(φ) = 〈x j1 , . . . , x jn〉. Then we have

that F n
φ

t i1 . . . t in is true at I iff φ
I(t i1 )...I(t in )
x j1 ... x jn

is an axiom of M 2′
ω , where

φ
I(t i1 )...I(t in )
x j1 ... x jn

means the SIMULTANEOUS SUBSTITUTION of I(t i1), . . . ,I(t in) for
the free occurrences of x j1 , . . . , x jn in φ, respectively;

• ∀xφ is true at I iff φui
x is true at I for every individual constant ui .

• The clauses for truth-functional connectives are the expected ones.
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The interpretation for the language M2

Let F n
φ1

, F n
φ2

, . . . be an ENUMERATION OF THE N-ARY PREDICATES OF N, for n = 1,2,

etc. Now the interpretation I′ of the language M2 will be defined relative to the
interpretation I of the language N.

• If x i is an individual variable, set I′(x i) = ui

• If X n
j is the j th n-ary relational variable, set I′(X n

j ) = F n
φ j

, where F n
φ j

is the j th

n-ary predicate of N.

• Let X n
j x i1 . . . x in be a WFFM2

. Given the above two itens, define:

– X n
j x i1 . . . x in is true at I′ iff F n

φ j
ui1 . . . uin is true at I.

• If ∀ξψ is a WFFM2
, for ξ an individual or n-ary relational variable, then:

– ∀ξψ is true at I′ iff ψ is TRUE AT EVERY INTERPRETATION I′∗ DIFFERING

FROM I′ AT MOST IN THE VALUE ATTRIBUTED TO ξ.

• The clauses for truth-functional connectives are defined as usual.

In order to avoid quantification over interpretations in the case of formulas of the
form ∀ξψ, one can add the individual constants uk and predicates F n

φ
to the language

M2.15 This is another issue with the intended nominalistic interpretation for M2, we
will come back to it later.

3.3. The higher-order case

The interpretation for second-order language M2 given above can be lifted for higher-
order languages. Henkin (1953, p.24) remarks that in a sentence of the sort G(F k),
where the predicate F k appears in argument position, it is not necessary to read the
predicate as being a name for a corresponding class or property, pace Quine. One
can hold that G(F k) means that the predicate F k itself has G. The same happens for
quantified predicate variables occurring in argument position, as in ∀X kG(X k).

Henkin does not develop the details for the higher-order case in (1953), but refers
the reader to his papers (1949; 1950). The approach of (1950) is rather different
in that it depends on choice functions available in the object language. In order to
avoid them, he points out (1950, p.89–90) that one would need to follow the route
of (1949). One way to do so is to construct a higher-order model, whose higher-order
domains contain all and only definable relations of each respective order (see section
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4.2 below for details). Another way is to “flatten” the higher-order predicates into
individuals of various sorts. In this case we would interpret a second-order predicate
Gα as an individual Gα of the sort α, and the first-order predicates Fβ would also be
interpreted as individuals Fβ of the sort β , and cγ1 , . . . , cγk individuals of the sort γ.
Thus, the relation each of Gα and Fβ has with its arguments is interpreted through
special first-order membership relations E n, one for each sort. E.g. Fβ cγ1 . . . cγk is true
iff E i(Fβ , cγ1 , . . . , cγk) is true; similarly, GαFβ is true iff E j(Gα, Fβ) is true. The same
would be done for predicates of higher-order having various types. This is the usual
and perspicuous approach proposed by Manzano (1996) for the general semantics
for higher-order logic.

However none of these approaches fits well with the procedure employed for the
second-order case and with Henkin’s own descriptions for the higher-order case.16

To follow them, we would have to keep the higher-order predicates “unflattened”
and, at each order, the formulas having predicate variables would be interpreted
in terms of predicates available in a lower order. This route is developed in detail
below for third-order language M3 where we have second-order predicate constants
of any type. To obtain those constants we use open well-formed formulas of M2. The
same method should be employed to obtain an interpretation for fourth-order M4,
whose second-order variables would be replaceable by such second-order predicate
constants of M3, and so on.

In order to obtain appropriate second-order predicates from open-formulas of
M2, let us briefly define some predicates for type symbols T 2 up to second-order:

• 〈0,1, . . . , 1〉 is T 1, for any sequence of n symbols “1”, n= 1,2, 3, . . .,

• if the members of the sequence τ1, . . . ,τn are either equal to “1” or are T 1,
and there is at least one which is T 1, then 〈0,τ1, . . . ,τn〉 is T 2.

An individual variable x has type equal to “1”, an n-ary predicate variable X n

(n = 1,2, 3, . . .) has type equal to “〈0,1, . . . , 1〉”, with n occurrences of “1”. Recall
that we are referring indistinctly to variables, relational or individual, using the meta-
variables ξ1,ξ2, etc. We define an attribution of types to the open well formed for-
mulas φ of M2 as follows:

• ifFR(φ) = 〈ξ1, . . . ,ξk〉, with variables having types τ1, . . . ,τk, respectively,
then the type of φ is 〈0,τ1, . . . ,τk〉.

For a WFFM2
φ having a type τ that is T 2, associate a predicate constant Gτ

φ
with

the same type. Thus we have that:

• Gτ1
φ1

, Gτ2
φ2

, Gτ3
φ3

, . . . are SECOND-ORDER PREDICATE CONSTANTS (RCON2).17
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All well-formed formulas of M2 are well-formed formulas of M3. The latter have
in addition formulas involving the new second-order predicate constants:

• if Gτ
φ

is RCON2 with τ= 〈0,τ1, . . . ,τk〉, and the variables ξ1, . . . ,ξk, relational
or individual, have the types τ1, . . . ,τk, respectively, then

Gτ
φ
ξ1 . . .ξk is a WELL-FORMED FORMULA OF M3 (WFFM3

).

The interpretation of M3

Let I′ be the interpretation of M2 above, we define an extension I′′ to interpret
the second-order predicate constants of M3. Let Gτ

φ
be a RCON2, τ = 〈0,τ1, . . . ,τk〉,

whereFR(φ) = 〈ξi1 , . . . ,ξik〉. Let the variables ξ j1 , . . . ,ξ jk have the types τ1, . . . ,τk,
respectively, then

• Gτ
φ
ξ j1 . . .ξ jk is true in I′′ iff φ

ξ j1 ...ξ jk
ξi1 ...ξik

is true in I′′.

4. General assessment

Henkin’s proposal is then a reasonably smooth continuation from the nominalistic in-
terpretation given by Quine for first-order logic: predicate variables bound by quan-
tifiers would not range over anything, but be replaceable by actual predicates of a
given language.

As remarked before, the above interpretation presupposes that the majority of the
predicates in small caps have been given an adequate nominalistic account, notably
“to be a first-order formula”,18 and “to be a true first-order formula”. The nominalistic
adequacy of “to be a higher-order formula” and the related predicates are guaranteed
given that the first-order counterparts are so. Now, the predicates whose nominalistic
adequacy need to be examined are:

1. to be an axiom ofM 2′
n , for n= 1,2, 3, . . .,

2. to be an axiom ofM 2′
ω ,

3. to be a true higher-order formula.

In this section we analyse whether they can be given a satisfactory nominalistic
account.
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4.1. On abstract entities and infinity

The issue over abstract entities is entangled with the one about infinity in the interpre-
tation of the section 3. In it, all references to collections are meant to be nominalistic,
for example, the collection of free-variables of a given formula φ is not meant to be
the set of free-variables ofφ, but the aggregate of such inscriptions. The delicate point
of the interpretation is that infinitely many inscriptions are needed to constructM 2′

ω ,
so it is an infinite aggregate. Henkin argues (more on this below) that the assump-
tion of the availability of infinitely many concrete objects is an idealization, thusM 2′

ω

would be an ideal object. Nevertheless, it is difficult to sustain that an ideal infinite
aggregate is still a concrete object, as it does not seem to satisfy none of the defining
features of concrete objects exposed on section 1.1.

Moreover, the construction ofM 2′
n , for n = 1, 2,3, . . ., is given inductively and it

is not possible to apply induction over some collection of formula-inscriptions, if the
expression “collection of formula-inscriptions” refers to nothing but an aggregate of
formula-inscriptions. The concrete bunch itself cannot serve as the object on which
to apply induction: the concrete bunch determines different collections but in the
induction at issue we are interested in just one. The different collections the bunch
determines cannot themselves be called concrete, it is more appropriate to treat them
as being abstract, that is, just sets. Thus, it seems that one cannot avoid the usage of
abstract entities in this task.

A further issue is that, already in (Quine 1953), the attempt to base the case
for nominalism purely on the rejection of abstract objects was no longer considered
feasible and a better dividing line was proposed. Quine says (1953, p.129):

From a mathematical point of view, indeed, the important opposition of doc-
trines here is precisely the opposition between unwillingness and willingness
to posit, out of hand, an infinite universe. This is a clearer division than that
between nominalists and others as ordinarily conceived, for the latter di-
vision depends on a none too clear distinction between what qualifies as
particular and what counts as universal.

It is noticeable that in (Goodman & Quine 1947) and (Quine 1947; 1953), no
distinction is made between potential and actual infinity, so it seems that both would
have to be rejected indistinctly by the nominalist. However, it is not clear how the
concept of infinity (indistinctly taken) is to be understood and opposed to the con-
cept of finiteness. If the (former?) nominalist has been convinced that the distinc-
tion abstract/concrete is not usable and is ready to employ second-order language
under the full interpretation, he could define precisely the pair finite/infinite using
Dedekind’s notion: a domain G is infinite (finite) if there is (there is not) an injective
and non-surjective mapping from G to itself. Now if he thinks there are cases where
the distinction abstract/concrete is clear and would rather avoid using abstract en-
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tities whenever he can, he perhaps would try to use Dedekind’s notions under the
interpretation of section 3. As Henkin (1953, p.26) points out, the nominalist will
have trouble if he tries this route. Due to the fact that such an interpretation is rel-
ative to a given language, the notions of finitenesss and infinity end up themselves
being relative.

There are some interesting asymmetries between the notions of infinity and finite-
ness which are worth exploring further in this context. The first one concerns how
“easy” it is for the nominalist to obtain a precise definition for each concept. In the
case of infinity, the nominalist is able to provide a formal definition already in his
accepted system of first-order logic, as there is a first-order sentence φ that is true
only if the domain of interpretation is infinite, that is, φ has only infinite models.19

Thus, using a reasonable notion of definability, the concept of infinity can be formally
defined in first-order logic.

Now the concept of finiteness is not first-order definable, even with respect to
the broader notion of definability employed in the above paragraph. Moreover, the
nominalist cannot appeal to second-order logic under the interpretation of section
3 to properly define it. Let δ be a formulation of Dedekind finiteness in the second-
order language M2. Under the proposal of section 3, the meaning of δ is dependent
on the interpretation of the reference language N, which means that δ may be true
with respect to some interpretation of N, and false in another. From the “viewpoint”
of M2, the domain of interpretation would be deemed finite in the first case and, in
the second, infinite.

Connected with the above remarks, the second asymmetry is that the M2-sentence
¬δ (defining infinity) is persistent, as opposed to δ (recall definition of section 3).
This means that the notion of infinity has a stable character that finiteness lacks: if
a domain is deemed infinite by an interpretation I (¬δ is true at I), and thus N has
the relevant injective and non-surjective function, one is certain this will remain so
upon “expansions”20 of I. On the other hand, if δ is true at I, the domain thus being
deemed finite, then there is no guarantee that it will not be deemed otherwise upon
“expansions” of I.

Despite the resistance the concept of finiteness has for being precisely captured
by the nominalist, he could still claim that the intuitive notion of finiteness is clear
enough. He could take it to be a primitive notion, define infinity from it and build his
case against infinity. Trying to conciliate the usage of infinity with the nominalistic
demands, Henkin argues that in order for his interpretation to be constructed, one
does not need to assume that the universe really contains infinitely many inscriptions,
but only make believe or pretend that this is so. This pretense is not to be considered
a hypothesis about reality, but as an idealization and would be thus ontologically
innocuous (Henkin 1953, p.27). The idea is that such pretense would be analogous to
those involved in the construction of models in science in general, the main purpose
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of which being to simplify analyses and calculations. For example, consider some
cases where the domain to be investigated is finite but immensely complex, as the
behaviour of water molecules in a hull or air molecules under an airplane wing. Here
it is much simpler to disregard the object of study as composed of individual atoms
interacting with one another, and consider the whole as a continuous (thus infinite)
fluid. For most applications, the conclusions one draws for infinitely many objects
also hold for a very large number of them, a sort of “upside down induction”.

Let us grant Henkin’s argument on the use of pretense for the case ofM 2′
ω and that

there is no commitment to sets in the definition of the systemsM 2′
n . Even then, an

important issue remains. As it was remarked, the quantifiers in the meta-theory are
still understood objectually, and the interpretations for the higher-order languages
M2, M3, etc., must appeal to quantification over interpretations. This is not neces-
sary in interpretations for extensions of these languages with individual constants
u1, u2, etc. and with predicates F n

φ
, etc. In the extended languages, the interpretation

clauses for the quantifiers only require quantification over individual constants and
predicates. As regards, M2, M3, etc., it it is not clear how to avoid quantification over
interpretations without using the ad-hoc device indicated in note 15. Therefore, un-
less quantification over interpretations is itself explained substitutionally or by some
other method, the proposal of section 3 would still be committed to abstract entities.

Coming back to Henkin’s use of pretense, notice that it is different from the uses
of fictions in Quine (1947) and later in Field (1980). In these works the use of fictions
is nominalistically acceptable, but only if it is inessential and no more than a way of
speaking. Indeed, Field (ibid) spends a great deal of effort in the attempt to justify the
acceptance of fictions in this manner. On his turn, Henkin allows for uses of pretense
which are not dispensable, despite being only fictions.21 By requiring a non dispens-
able use of pretense and adopting Quine’s framework for ontological commitment,
reference to fictions would not be ontologically innocuous and would still have to be
counted as ontological commitments.

Therefore, the commitments of the interpretation of section 3 are:

• in the object language, at most denumerably many concrete objects;

• in the meta-language, denumerably many concrete objects and denumerably
many sets of concrete objects.

Though ontologically parsimonious, the interpretation still does not fit in the nomi-
nalistic perspective as it was characterized in section 1.1. Thus, predicates 1–3 of the
beginning of this section have not been given a nominalistic understanding, and the
question (a) of section 1.2 did not receive a positive answer for second and higher-
order logic.
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In order to construct his interpretation, Henkin needs to invoke a non dispens-
able pretense. However the allowed use of such form of pretense does not mean that
anything goes, otherwise the whole project of providing the interpretation for higher-
order logic would be trivialized. What then is the difference between (1) pretending
that there are denumerably many concrete entities and sets of these, and (2) pretend-
ing that there are infinitely many sets of anything whatsoever, sets of these and so
on? Henkin’s justification for the choice of (1) (1953, p.28) would probably go on the
following lines: compared with (2), pretense (1) involves a more reasonable assump-
tion about the quantity of entities, and the entities involved in the pretense are more
entrenched. Both pretenses have epistemic costs that have to be weighted against
the smoothness and simplicity they offer. In this case, the epistemic cost/benefit for
(1) would be better. However, there remains a possible issue with the interpretation
of section 3: the quantifiers for the first-order language L are (presumably) treated
objectually, and in the extensions, N,M2,M3, etc, they are treated substitutionally.
This topic is explored in the sequence.

4.2. Substitutional and objectual interpretations for the quantifiers

Nothing was said about the interpretation of the first-order language L apart from
the assumption that it is already nominalistic. On the first-order level, substitutional
quantification is known to be disliked on the grounds that it may dodge ontological
issues rather than solving them. Not to mention some serious issues that first-order
language presents with substitutional quantifiers, as shown by Shapiro (1991). So it
would be perhaps more harmonious if one could provide an objectual interpretation
for higher-order quantifiers that is proper higher-order22 and also ontologically par-
simonious. This is straightforward: the substitutional interpretation of section 3 is in
a certain sense equivalent to an objectual interpretation, having as the higher-order
domains all and only the definable23 subsets of the respective Cartesian products. In
the sequence such an interpretation is briefly exposed.

Let B be a model of the sort defined in the beginning of the section 3. We need
some more quick definitions: let ψ be an M2-formula with FR(ψ) = 〈x i1 , . . . , x in〉.
By B ⊩ψ[b1, . . . , bn] it is meant thatψ is true at B when its variables x i1 , . . . , x in are
assigned the elements b1, . . . , bn from B, respectively. An n-ary first-order relation R
on B is M2-definable if and only if there is a formula ψ with FR(ψ) = 〈x i1 , . . . , x in〉
such that R= {〈b1, . . . , bn〉 ∈ Bn |B ⊩ψ[b1, . . . , bn]}.

DefineB to be an op-model (ontologically parsimonious model) for M2 if and only
if all its higher-order domains contain all and only the M2-definable relations. It is
possible to construct an op-model B for M2 using the formal systemM 2′

ω as follows.
Define ICON to be the set of individual constants c1, c2, . . .. Take ψ to be an open
formula of M2′ with FR(ψ) = 〈x i1 , . . . , x in〉, and let Fn

ψ
be the set {〈c j1 , . . . , c jn〉 ∈
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ICONn | ψ
c j1 ...c jn
x i1 ...x in

∈M 2′
ω }. Then, define the second-order domains Bn to be {Fn

ψ
| ψ is

an open formula of M2′ withFR(ψ) = 〈x i1 , . . . , x in〉} and defineB= 〈ICON, 〈Bn〉n≥1〉.
By construction every relation R contained in the higher-order domains of B is

M2-definable. Suppose an n-ary relation Rn
j on the elements of B is M2-definable by

δ. It is easy to see thatB satisfies the comprehension axiom ∃X n∀x1 . . . xn(X n x1 . . . xn
↔ δ), then B satisfies ∀x1 . . . xn(X n x1 . . . xn ↔ δ) for some Rn

l ∈ Bn, which must
then be identical to Rn

j . Therefore, B is an op-model.

Construing the second-order quantifiers of M2 objectually and using op-models,
the ranges of second-order variables are limited to sets and relations that can be
defined in M2. It is clear that an M2-sentence φ is true at I′ of section 3 iff it is
true at B. An op-model can be constructed for languages of higher-order in a similar
fashion. So if the substitutional character of the interpretation of section 3 is disliked,
this objectual one can be adopted at the cost of allowing in the object language some
commitments of the meta-language.

5. Concluding remarks

Quine claimed that second-order logic is ontologically committed (i) to sets and (ii)
to more sets than could possibly be referred to in the language.

Henkin’s idea was to give an interpretation for higher-order logic which answered
both (i) and (ii). This was to be done by extending the nominalistic syntax proposed
by Quine and Goodman and changing the understanding of second and higher-order
quantifiers. In order to define the interpretation, one would only make reference to
finite collections of concrete objects, to nominalistically acceptable predicates and to
an idealized infinite collection of concrete objects. In this way the resulting interpre-
tation would be nominalistic and (ii) would be false under it, as it depends on the
standard semantics for second-order logic.

The alternative interpretation for the second and higher-order quantifiers fits well
with Quine’s own considerations on relation symbols in the first-order case L. The
interpretation proposed for these quantifiers is substitutional: the bound predicate
variables are read as mere placeholders to be replaced by predicates of a given lan-
guage. Then, the idea is to extend L with predicates F n

φ
which will be substituted for

the predicate variables of the second-order language M2. Such predicates F n
φ

are on

their turn interpreted with respect to a certain formal systemM 2′
ω . The higher-order

case is simply an extension of the above approach.
Under this interpretation (ii) is indeed false, though (i) remains true. However,

the commitment does not appear in the object language through the use of relation
variables, as Quine would have it, but on the meta-language: in order to give the
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interpretation for the second and higher-order quantifiers in M2, M3, etc, one quan-
tifies (in the objectual sense) over interpretations. Moreover, the predicates “to be an
axiom ofM 2′

n ” and “to be an axiom ofM 2′
ω ” cannot be given a nominlistic render-

ing in Quine’s framework, for they irreducibly require sets and denumerably many
objects for their definition.

Therefore, Henkin’s interpretation is not nominalistic, though it pursues onto-
logical parsimony and prefers well entrenched entities. In this sense, the interpreta-
tion successfully addresses those claims concerning the alleged excessive ontological
commitments of second and higher-order logic. As these claims are also countered
by Bob Hale in a recent proposal of a semantics for second-order logic, it is of interest
to compare both approaches, even if briefly.

5.1. A brief comparison with Bob Hale’s semantics for second-order logic

Hale proposes (2019) an interpretation for second-order language which aims to
counter Quine’s claim (1970, p.66) that “Set theory’s staggering existential assump-
tions are cunningly hidden in the tacit shift from schematic predicate letter to quan-
tifiable set variable”.24

As regards OC and quantification into predicate position, Hale claims that there is
no new commitment introduced, but merely the generalization of a previous one. The
use of first-order predicates would already commit one to the existence of properties.
However, no reasons are given for this, and Hale does not attack Quine’s argument
(section 2.2 above) that a predicate does not need to refer to anything in order to be
meaningful.

The interpretation proposed is model-theoretic, but Hale imposes the condition
that the second-order domains should not include the full power-set of the respective
n-fold domain of individuals, but only definable subsets. He argues that to restrict the
notion of definability to the object language is needlessly crippling, and saw no good
reason not to allow definability in the meta-language (ibid., p.2650).25 However,
Hale did not define precisely his meta-language and the adequate notion of defin-
ability for it. The only detail we are given about the meta-language is that it would
be “an extension of the object language to include a certain amount of set-theoretic
vocabulary” (p. 2651). Without this information we cannot properly evaluate the
ontological commitments of Hale’s interpretation. By contrast, the ontological com-
mitments of the interpretation of section 3 are clear: in the object language, at most
denumerably many concrete objects; in the meta-language, denumerably many con-
crete objects and sets of them. If the objectual interpretation of section 4.2 is chosen,
then the commitment to the existence of sets of concrete objects also occurs in the
object language.
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Notes
1The pair “universal/particular” is ubiquitous in the traditional debate, but many of the ar-

guments that are relevant to the present discussion and which involve this pair are motivated
by considerations over abstract entities.

2It is usual to employ this characterization of knowledge and argue that it would be im-
possible to obtain knowledge about abstract objects. Concerning this, an important paper is
(Benacerraf, 1973). Other examples can be found in (Burgess & Rosen 1997).

3E.g. Quine (1948, p.32) gives the following version: “we are convicted of a particular on-
tological presupposition if, and only if, the alleged presupposition has to be reckoned among
the entities over which our variables range in order to render one of our affirmations true.”

4On this, see (Chateaubriand, 2003).
5For such arguments to be coherent, it will be supposed that Quine and Goodman’s (1947)

proposal for a nominalistic syntax is correct.
6The underlying idea is that one would be able to attribute meaning to a predicate by

giving conditions of use.
7In such a conception of logic the domain of interpretation would be everything there is.
8During the 1960-80s, many works were published on this issue, mainly concerning first-

order languages. A good example is Marcus (1978), where in the final remarks (p.361) there
is even a suggestion for the development of a thoroughly substitutional approach up to the
higher-order.

9For soundness results, refer to Manzano (1996).
10The General or Henkin models are those satisfying a minimal condition: all definable first-

order relations are in the corresponding higher-order domains. Incidentally, one can prove
that if B ⊩ ∃F∀X∃x∀y(F(x , y)↔ X (y)), then a certain definable first-order relation is not
in the corresponding domain of B, thus B would not be a Henkin model.

11Note we only give the usual recursive definition for this predicate. The proper nominalis-
tic definition should not use recursion but follow the route established in (Goodman & Quine
1947, p.116).

12An example can be found in (Manzano 1996).
13The consistency of a collection of formulas in second-order logic is reduced to the con-

sistency of a related collection of propositional formulas (Henkin 1953, p.22). The witness
condition is assured by the following:

• At the nth extensionM 2′
n , if nth formula has the form ∃X j

iφ, then to obtainM 2′
n+1 the

axiom ∃X j
iφ → (φ)

R j
k

X j
i

is added toM 2′
n , where R j

k is the first j-ary relation constant
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not appearing inφ nor inM 2′
n . A similar process goes for closed formulas of the form

∃x iφ, where the axiom ∃x iφ→ (φ)ck
x i

is added.

14A formal system is MAXIMALLY CONSISTENT if for each closed formula φ of its language,
either φ, or ¬φ is an axiom of the system.

15An alternative is to extend the interpretation I of N with definitions for the predicate
variables and second-order quantifiers, obtaining Ie, so that it is possible to define the truth

of second-order quantified formulas, i.e. ∀X n
jψ would be true at Ie iffψ

F n
φ

X n
j

were true at Ie for

every predicate F n
φ

; analogously for first-order quantified formulas. However, as the language

M2 does not include the language N this proposal seems unreasonable and ad hoc.
16He says

(. . . ) we consider how to interpret formulas in which these higher-order vari-
ables are quantified. Again, we shall consider a formula (φ)A to be true just
in case every formula A′ is true which results from A by the substitution for
the variable φ of an admissible predicate. (1953, p.24))

17These predicates can de obtained easily if we have the lambda operator available in
M2: for variables ξ1, . . . ,ξn, relational or individual, with types τ1, . . . ,τn, and φ a well-
formed formula of M2, we would have the second-order predicate λξ1 . . .ξn.φ, with type
τ= 〈0,τ1, . . . ,τn〉.

18Although Henkin in (1953) and (1955) did not mention Quine and Goodman’s program
for providing a nominalistic syntax, in (1966, p.192, fn. 10) some important issues are raised
against such a program. Also, Weir (2019, sec. 5) claims that the notion of well formed
formula is ill defined in Quine and Goodman’s system.

19Under a common notion of definability, for a sentence to define the collection of infinite
models, it would have to capture them directly so to speak, and not through extensions of
them. This means that if ψ defines the collection of infinite models, and a model contains
only an infinite domain and nothing else (that is, a model on the empty vocabulary) it should,
according to this notion of definability, be included in the collection of models ofψ. Now one
could say that this notion of definability is too strict. A metaphor fits nicely here: sometimes to
detect an infinite structure one needs to add some reagent to cope with the visual limitations
of the system at hand. For first-order logic, this would mean adding a binary relation symbol.
The first-order sentence ∀x¬Rx x ∧∀x yz((Rx y ∧Ryz)→ Rxz)∧∀x∃yRx y has only infinite
models, but these models need to contain a binary relation. This laxer notion of definability
is known as projective definability.

20This is a correlate of the notion defined in the beginning of section 3. Here, by “expansion
of I”, it is understood an increase of available predicates from the reference language N to
be substituted for predicate variables.

21In this sense, his approach would be similar to the one developed by Leng (2010). I owe
this point to an anonymous reviewer.

22In contrast with the first-order many-sorted one presented in subsection 3.3.
23With respect to the object language.
24 This claim is made after a remark about the relation between the comprehension axiom

in set-theory: ∃x∀y(y ∈ x ↔ F(y)), and its second-order version: ∃G∀y(G(y)↔ F(y)).
The latter would be trivially inferred from the validity ∀y(F(y)↔ F(y)).
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25It is claimed that if the subsets definable in the meta-language are allowed to be in their
respective second-order domains, the categoricity result for second-order arithmetic still goes
through and, for the same reason, the usual methods for proving compactness, completeness
and Löwenheim-Skolem fail. The argument purporting to show why categoricity would still
hold is based on the claim that the relevant subset of the domain of individuals, needed in
the categoricity proof, would be included in Hale’s models, as it would be definable in the
meta-language (p.2667).
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