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Abstract. Philosophical issues often turn into logic. That is certainly true of Moore’s Para-
dox, which tends to appear and reappear in many philosophical contexts. There is no doubt
that its study belongs to pragmatics rather than semantics or syntax. But it is also true that
issues in pragmatics can often be studied fruitfully by attending to their projection, so to
speak, onto the levels of semantics or syntax — just in the way that problems in spherical
geometry are often illuminated by the study of projections onto a plane. To begin I will de-
scribe a potentially vast landscape of logics of a certain form, with some illustrations of how
they appear naturally in response to some problems in philosophical logic. Then I will turn
Moore’s Paradox into logic, within that landscape, and show how far it can be illuminated
therein.
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1. What is classical logic?

When I first taught classical sentential logic it was, as is now usual, in natural deduc-
tion format, and was scarcely aware how large a change that marked from its origin.
The original classical sentential logic (henceforth OCSL ), as found in Whitehead and
Russell (1910) for example, was essentially what we now call a Hilbert style system:
a system of axioms, with a single derivation rule, Modus Ponens.1

How did the profession arrive at the current teaching form, classical sentential
logic in natural deduction formulation (henceforth NDFSL)? And in what sense are
OCSL and NDFSL different formulations of the same logic — if, indeed, they are?

2. The Watershed: Herbrand 1930

The change certainly derives from the innovations introduced by Gentzen (1934-5)
and Jaskowski (1934). But those innovations had their logical origin in Herbrand’s
Deduction Theorem (Herbrand 1930):
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26 Bas C. van Fraassen

(*) X , A⊢ B iff X ⊢ A⊃ B.

This was proved for OCSL. What it implied for logical practice was that the

Rule of Conditional Proof: If B is derivable from premises X together with premise
A then (A⊃ B) is derivable from X

is admissible for OCSL. That is to say: adding the Rule of Conditional Proof to OCSL
does not change the set of direct inferences. To be precise, for the augmented system
of OCSL with Conditional Proof, the following holds:

⊢ A in OCSL iff ⊢ A in the augmented system;
X ⊢ A in OCSL iff X ⊢ A in the augmented system.

So, if we take these two equivalences as the criteria for being the same logic, then
OCSL and NDFSL are the same logic.

As you will no doubt conclude from the emphasis in my text, I will be exploring
how they may not be the same.

I call Modus Ponens a direct inference rule for it sanctions only moves from given
premises to a given conclusion. Conditional Proof is not a direct inference rule, it is
an inference to inference rule. Once added the logic is no longer a Hilbert style system,
it is something else.

Other inference to inference rules were quickly shown to be admissible, for ex-
ample Proof by Cases (Disjunctive Syllogism), and the route to the current Natural
Deduction Formulation was now open.

All of this was about the old familiar sentential logic. A quick look at the proof
of the Deduction Theorem shows that it hinged on the system having, besides its
axioms, just that one direct inference rule of Modus Ponens. The question is then:
under what conditions can the Deduction Theorem be proved in general?

3. Applied Logic

In philosophical logic, and even more in philosophy of science, our concern is with
languages in which the terms and sentences have meaning or reference, that is, with
interpreted or semi-interpreted languages. Classical sentential logic may be sound
for such a language, but the meaning relations among the terms and sentences yield
other valid inferences, to be captured within the logic of that language.

Rudolf Carnap (1952), concerned with the character of any such applied logic,
introduced the notion of meaning postulates: additional axioms, not logically true,
but true ex vi terminorum, as the Medievals would have said.
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Let us call such a logic an axiom-extended logic. If non-logical axioms are added
to OCSL, the Deduction Theorem continues to hold. More generally, if the Deduction
Theorem holds for a logic then the Theorem will also hold for all its axiom extensions.

But what if there are, in such a language, arguments not logically valid but valid
ex vi terminorum and a corresponding rule is added? Let us call that a rule-extension
and the resulting logic a rule-extended logic. If the Deduction Theorem held in the
original, will it still hold in the rule-extension?

As we know, the addition of rules in this way can trivialize a logic. Arthur Prior
(1960) gave the example of a non-logical connective, tonk, with the introduction and
elimination rules

A⊢ (A tonk B)

(A tonk B) ⊢ B

So some rules cannot be added on pain of triviality. On the other hand, if a rule-
extension of a logic is not trivial or defective in some other way, is it perhaps always
equivalent to an axiom-extension? In that case the acceptable rule-extensions would
all be such as to present no obstacle to the continued validity of the Deduction Theo-
rem. It would also, of course, trivialize the distinction between axiom-extension and
rule-extension.

4. An example of rules in conflict with the Deduction
Theorem

Just as Prior did, let me introduce a non-logical connective, T. This one is unary,
and is to be read as “It is true that”. However, I propose to have this in a language
which is not bivalent: it has truth-values 1 and 0 but also some other ones. Only 1 is
designated: all the others are ways of not being true, and a sentence is valid if and
only if it must always have value 1. Negation acts in a classical way as long as only 1
and 0 are involved. That is, A has value 0 only if ∼A has value 1, and A has value 1
only if ∼A has value 0. Finally, a disjunction has value 1 if and only if both disjuncts
have value 1. Since a sentence can have a different value from 1 or 0, it is clear that
(TA∨ T∼A) is not a valid sentence.

Could there be such a language as I have just described? William and Martha
Kneale, in their great history of logic, offered a proof that there cannot be (Kneale
1962: 47). Let us examine this.

What I have described implies very clearly that the following arguments are valid
in this language:

A, therefore TA

TA, therefore A
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So the logic of this language should have the direct inference rules

A⊢ TA

TA⊢ A

Looking at the Kneales’ text, it is clear that they assumed that the Deduction The-
orem must hold. In that case, the rule-extension in question is equivalent to an axiom-
extension: those inference rules yield the conditionals of forms (E ⊃ TE)and(TE ⊃ E)
as theorems. With that assumed, the Kneales’ proof is correct:

1. A⊃ TA theorem
2. ∼TA⊃ ∼A [1]
3. ∼A⊃ T(∼A) theorem
4. ∼TA⊃ T(∼A) [2, 3]
5. TA∨ T(∼A) [4], definition of “∨”

and so the Principle of Bivalence has been proved a priori!
But I submit that the sort of language I described, which is not bivalent, can (and

does) exist.2

Our challenge, then, is to provide a general account of rule-extended logics, and
of the languages of which they are the logics: how to understand them, and how to
characterize the valid argument relation in such languages.

5. A general semantic analysis for rule-extended logics

I will examine a Hilbert style system, with a corresponding language, and a rule-
extension of that system. Then I will provide a semantic analysis of the language
for which that rule-extension is sound and complete. I will outline this as a general
procedure, for the construction of a language in which the rule- extension is sound,
when starting with a given Hilbert style system.

5.1. Starting with a basic system S

System S is an axiom-extension of OCSL, and is sound and complete for a corre-
sponding language LS.

The language LS has a class of sentences, and a class of admissible valuations
(to be referred to as the classical valuations of LS). These valuations assign one of
the values T, F to each sentence, and are truth functional, by the classical truth-table
rules, for ⊃ and ∼ (and other connectives defined in terms of these in the classical
manner).
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We shall call a set of sentences in the syntax of LS classically satisfiable if and only
if there is some classical valuation which assigns T to all the members of that set. The
valid consequence relation in this language is thus defined as follows:

X |= A in LS if and only if all classical valuations which satisfy X also satisfy A.

5.2. Introducing non-logical rules and the rule-extension ExL

Imagine that at this point we gain a greater insight in the language that we had
formalized as LS, and that we realize that certain non-logical direct inference rules
R must be recognized as valid.

The classical valuations do not respect the non-logical rules in R. Let ExL be the
rule-extension of S formed by adding rules R.

Since ExL will not be a Hilbert style system, it should be noted that the definition
of derivability for the rule-extension takes the same form as for S:

Definition. A is derivable from X in ExL (X ⊢ A in ExL) if and only if there is a finite
sequence of sentences, each of which is either a member of X or an axiom of S or
follows from preceding members either by Modus Ponens or by one of the rules in R.

Definition. An ExL theory is a set of sentences in the syntax of LS which is closed
under derivability in ExL.

It follows from the definitions that X ⊢ A in ExL if and only if A belongs to all ExL
theories that contain X .

How shall we approach the semantic analysis of this system, that is, how shall we
conceive of a language LS* with the syntax of LS in which

(a) the theorems of system S are still valid sentences,
(b) the inference rule of S, that is to say Modus Ponens, is still truth-preserving,
(c) the inference rules in R are also truth-preserving?

The answer to this question is relatively straightforward. The ‘possible world’
descriptions — the consistent satisfiable sets of sentences — must be classically satis-
fiable ExL theories. These are of course the sets of sentences that include all theorems
of S, closed under Modus Ponens, and also closed under all the rules in R, and are
satisfied by some classical valuation.

Equivalently, the admissible valuations of LS* are valuations that satisfy the clas-
sically satisfiable ExL theories.

What can these be?

PRINCIPIA 26(1): 25–38 (2022)



30 Bas C. van Fraassen

5.3. Enter supervaluations

We define the class of admissible valuations of language LS* as follows (they are
supervaluations of LS).

Definition. ϕ is an admissible valuation of language LS* iff there is a classically sat-
isfiable theory X of ExL such that, for all statements A:

ϕ(A) = T iff all classical admissible valuations which satisfy X , assign T to A;

ϕ(A) = F iff all classical admissible valuations which satisfy X , assign F to A.

In all other cases, ϕ(A) is undefined.
These functions are thus in general partial functions on the set of sentences. When

a sentence is not assigned a truth-value by such an admissible valuation of LS*, we
speak of a ‘truth-value gap’. The admissible valuations of LS* can be equivalently
characterized as follows.

Definition.

(a) CLAS(X ) = the set of classical admissible valuations which satisfy X ;
(b) ϕ is an admissible valuation iff there is a classically satisfiable ExL theory X such

that ϕ =
⋂︁

CLAS(X ).

We may just remark here that this entails a distinction between the Principle of
Bivalence (that every sentence is true or false) and the Principle of Excluded Middle
(that, for every sentence A, the sentence (A∨ ∼A) is logically true. For all classical
tautologies are still true on all supervaluations, and all classical direct inferences,
from premises to a conclusion, also remain valid.

Definition. X |= A in LS* if and only if all admissible valuations of LS* which satisfy
X also satisfy A.

5.4. Soundness and Completeness Theorem

We take it as given that system S is sound and complete for language LS. Assume for
a moment that there are admissible valuations for the language LS*. (That we have
defined them does not guarantee their existence: since we have not put constraints
of the set R of non-logical rules, there might not be any classically satisfiable ExL
theories).

Theorem. If X |= A in LS then X |= A in LS*.

This is clear from the definitions, since a counterexample to an argument which
is a supervaluation of LS would require there to be a classical valuation that is a
counterexample to that argument.
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Theorem. X |= A in LS* if and only if X ⊢ A in ExL.

By the definition of admissible valuation of LS* it follows that X |= A exactly if
A belongs to all classically satisfiable theories of ExL that include X . There may well
be ExL theories that are not classically satisfiable. But the theorem follows from:

Lemma. If A belongs to all classically satisfiable ExL theories which include X then
A belongs to all ExL theories which include X .

For suppose the antecedent, and that Y is an ExL theory which contains X but is
not classically satisfiable. Then by the soundness and completeness of S for LS and
the fact that all axioms and rules of S belong to ExL, Y is not a consistent S theory.
Since S is an axiom extension of OCSL it follows that Y contains all sentences. Hence
it also contains A.

The upshot? Soundness and completeness for a rule-extension are immediate, in
all cases for which our assumptions hold.

So where does the work come in? The assumption we introduced at the begin-
ning was that LS* actually has admissible valuations. If it does not, soundness and
completeness are trivial.

To establish non-triviality, it is required to show that, in view of what the rules
in R are, the language LS* actually does have admissible valuations. And more of
course: in all cases of interest it is required to go beyond this minimal requirement,
and to show that this language has in fact a large, rich array of admissible valuations,
so that all that we consider relevantly significant can be expressed in this language.

5.5. General characteristics of rule-extensions and failure of
inference-to-inference rules

What remains, of familiar inference to inference rules?
To begin there are the very basic ones that make no reference to details in the

syntax, they are:

The Structural Rules:

if A is in X then X |= A

if X |= A then X , B |= A

if X |= A and Y |= B for all B in X then Y |= A

Any other inference to inference rule can be invalidated in some rule-extended
logic (van Fraassen 1971, Ch. V, 3c.).

At the end I will take up some counterexamples to familiar natural deduction
rules, the ones — like Conditional Proof — that rely on previous inferences. By that
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time we will have a concrete example of a rule-extended logic, based on considera-
tions about Moore’s paradox, to give us live examples.

6. Moore’s Paradox and Epistemic Logic

My beliefs are often false, but I have difficulty acknowledging this. And there are
many truths that I do not happen to believe — but that too is difficult to express with
precision and rigor. G. E. Moore pointed this out (Moore 1942a: 543 and 1942b:
204), and the point was taken up by Wittgenstein. As an example let us take:

(a) It is now raining in Peking, and I do not believe that it is now raining in Peking.
(b) It is not raining in Peking now, but I do not believe that it is not raining in Peking

now.

It is clear that if either of these assertions was one I could make truly and sincerely,
it would show a curious sort of incoherence in my beliefs. For asserted truly and
sincerely it would reveal that there was something that I both did and did not believe.

Yet neither of these two statements expresses something logically false. In fact,
since at present I neither believe nor disbelieve that it is now raining in Peking it
follows that either (a) is true or (b) is true.

Let me use small letters like “p” now to stand for statements and introduce the
unary connective B to stand for “I believe that”. Then the above shows that the form
(p&∼Bp) is not the form of a logical falsehood, although it is not something an agent
could ever truly assert.

Things look even worse for the form (∼p & Bp). This appears to express belief in
an acknowledged falsehood, and so again, if asserted truly and sincerely would reveal
incoherence in my beliefs. Yet again the form is not the form of a logical falsehood,
since I must acknowledge, that unfortunately, as I sometimes find out in retrospect,
I do tend to have false beliefs.

The most obvious response from the side of logic is that this is a matter which
belongs neither to proof theory nor to semantics, but to pragmatics. For the offending
sentences are in first-person, and cease to be problematic if “I” is replaced by “she”.

That is correct, and the subject of pragmatic tautologies and absurdities is fas-
cinating in itself. But it is still possible, and may be fruitful, to attempt to formalize
this language and to investigate, at the shallow level of semantics and syntax, the
conditions under which a believer will never fall prey to Moore’s paradox.

That is what I shall do now but, and this is the relevance to all that went before,
I will show that there is just under the surface a rule-extended logic. In fact, it is the
logic that governs the agent’s own reasoning as she manages her own beliefs.
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6.1. Attempts to uncover a hidden contradiction

In the literature, starting with Hintikka (1962: 16–31,88–89, 123–125), we can see
suggestions that Moore’s paradox is to be handled in the logic of belief by strength-
ening the axioms. The idea seems to be this:

When I believe something, whatever it is, I believe it to be true. So, whatever
I believe I believe to be true. Therefore I do not believe that (Bp & ∼p) because I
believe its opposite, namely (Bp ⊃ p). This would certainly warrant the acceptance
of the following axiom in the logic of belief:

(*) ⊢ B(Bp ⊃ p)

Jaakko Hintikka, Richmond Thomason, and Charles Cross all considered that this
axiom should be part of the logic of belief, referring to Moore’s paradox for its in-
spiration (see van Fraassen 2011 for details). But then Thomason showed that in a
sufficiently rich context, for a sufficiently self-aware agent, this leads to a contradic-
tion via a Goedel type argument (Thomason 2011; van Fraassen 2011).3

I submit that the clue for us lies here in my phrase “a sufficiently self-aware agent”,
and want to suggest that sufficient self-awareness would lead an agent’s discourse
not to be subject to suggested axiom (*), but to another somewhat similar looking
one.

6.2. A self-transparent believer

If a robot were constructed to simulate rational belief and were programmed only to
avoid logical falsehoods and unsatisfiable theories, it would have no qualms about
entering into instances of Moore’s paradox. To have the insight which avoids the
paradox it would have to record what its beliefs are (so far) and then become aware
of the discordance.

Accordingly I suggest that we focus on believers who, though perhaps wrong
about many things, are right about what beliefs they have. With the notation intro-
duced above, that would require the logical principles

1] If Bp then BBp

2] If BBp then Bp

to hold. I will call such believers self-transparent.4

To begin I will discuss this in the context of normal modal logic. I imagine possible
worlds, each with a designated agent. There are two ways of looking at such a pos-
sible world model. For us, looking from the outside, the sentence Bp is true in world
w exactly if the designated agent in w believes that p. This agent would be ‘saying
in his heart’ “I believe that p”. So for us, Bp is a sentence in third-person language,
while the agent assents to the corresponding first-person sentence.
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6.3. The normal modal logic KD4C4

The family of normal modal logics is so well studied that we have a complete taxon-
omy with a corresponding systematic nomenclature. The logic of the self-transparent
believer is an extension of the basic system K, with the addition of:

the Deontic principle: If Bp then ∼B∼p

the S4 principle: If Bp then BBp

the converse S4 principle: If BBp then Bp

Hence it is designated KD4C4. In the standard semantic analysis of normal modal
logics the model structures have general form: a set of possible worlds with an access
relation R among them. The assignment of truth-values is the classical bivalent one
for ∼ and ⊃, while Bp is true in a world w exactly if p is true in all worlds bearing R
to w.5

For each of the specific logical principles there is a corresponding condition on R.
For the deontic principle it is that R is serial: for each world w there is at least one
world that bears R to w, and for the S4 principle it is that R is transitive. What is of
interest to us here is the condition that corresponds to the converse S4 principle. It
has various names in the literature, but since it is implied by reflexivity I give it a
suitably mnemonic name:

Definition. The access relation R is weakly reflexive if and only if for any worlds x ,
y , if xRy then there is a world z such that xRz and zRy .

In the model structures for the language the self-transparent believer the access
relation is serial, transitive, and weakly reflexive.

Let us call this language LST, for “language of the self-transparent believer”.
There are counterexamples among these model structures to show that neither

B(p ⊃ Bp) nor B(Bp ⊃ p) is a valid sentence. So the believer’s self-transparency does
not consist in having either the belief, for any and all propositions p, that p is true
if, or only if, she believes that p. And it is also easy to show that the self-transparent
believer never falls prey to Moore’s paradox: no such believer believes any proposition
of either the form (p &∼Bp) or (∼p & Bp).

But the more interesting area to explore is the reasoning that is correct for the
self-transparent believer when she is expressing her beliefs in first-person language.
What beliefs do beliefs bring along with them, logically speaking?

6.4. Inside the self-transparent believer’s beliefs

In world w there is a designated agent, and Bp is true in w exactly if p is one of the
propositions believed by that agent. So let us designate the agent’s belief set in that
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world, the set {p : Bp is true in w}, as B(w). That is in general clearly different from
the set of propositions that are true in w, so we can define two distinct consequence
relations. The first is the usual one, and the second depicts how beliefs will logically
bring other beliefs with them. I define this relation for sentences, in the language
LST described above:

sentence p is a semantic consequence of set of sentences X in LST (briefly X |= p)
if and only if, for all model structures M , all worlds w in M , if all members of
X are true in w then p is true in w;

sentence p is a doxastic consequence of set of sentences X in LST (briefly, X ⇛ p)
if and only if, for all model structures M , all worlds w in M , if all of X is included
in B(w) then p is in B(w) as well.

We know what is the logic of |=, it is KD4C4. But what is the logic of ⇛? To
answer this we need to look at the characteristics of belief sets. And here we will see
the connection of the self-transparent believer, who avoids Moore’s paradox, to the
subject of rule-extended logics.

T0. If B(w) |= p then p is a member of B(w).

T1. If Bp is in B(w), then p is in B(w).

T2. If p is in B(w), then Bp is in B(w).

T3. Neither (Bp ⊃ p) nor(p ⊃ Bp) belongs to all belief sets for all sentences p.

T4. Neither (Bp &∼p) nor (∼Bp & p) belongs to any belief set.

To put it more bluntly: in the logic of⇛, which is an extension of KD4C4, there
are two new derivation rules

from p to infer Bp,

from Bp to infer p,

but no corresponding logically true conditionals. So the Deduction Theorem fails in
that logic: it is non-trivial rule extension of KD4C4. In fact, that logic, the complete
logic of doxastic consequence, is the following logical system:

A1. If p is a theorem of KD4C4 then ⊢ p

R1. p, (p ⊃ q) ⊢ q

R2. p ⊢ Bp

R3. Bp ⊢ p
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6.5. Counterexamples to Natural Deduction Rules in the logic of belief

In the logic of self-transparent belief we have therefore the direct inferences sanc-
tioned by

p ⊢ Bp,

Bp ⊢ p

and we keep all the theorems and direct inferences that Frege and Russell gave us
in sentential logic, as well as all those of the normal modal logic KD4C4. Familiar
natural deduction rules do remain valid, provided they are not used in combination
with the new rules that extend the classical system.

Here are some counterexamples to the validity of certain natural deduction rules
in the logic of self-transparent beliefs.

Disjunction Introduction

1] It is raining in Peking ⊢ I believe that it is raining in Peking

2] It is not raining in Peking ⊢ I believe that it is not raining in Peking

3] Either it is raining in Peking or it is not raining in Peking ⊢ Either I believe that
it is raining in Peking or I believe that it is not raining in Peking

4] ⊢ Either I believe that it is raining in Peking or I believe that it is not raining in
Peking

If this were valid, agnosticism would be impossible. We have to disallow the move
from the first two lines to the third, to block this ‘proof’.

Reductio ad Absurdum
1] (Bp &∼p) assumption
2] Bp from 1]
3] p from 2]
4] ∼p from 1]
5] ∼(Bp &∼p) from 1] – 4 ] Reductio
6] (Bp ⊃ p) from 5]

but we saw above that this is not a theorem, because B(Bp ⊃ p) is not a theorem of
KD4C4. But (Bp &∼p) is not true on any admissible valuation.

Conditional Proof
1] I believe that God exists assumption
2] God exists from 1]
3] If I believe that God exists then God exists from 1] – 2]
4] In fact, I do believe that God exists premise
5] God exists from 3], 4]
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But as we all know, there is no valid inference from belief to truth!

Postscript

In the landscape of logics beyond the deduction theorem, that I exhibited here, there
are clearly pairs of logics that are the same in that they share both the theorems and
the direct inference relation, but different in that certain inference to inference rules
are valid in one but not the other. This shows that we cannot identify a logic with
a direct inference relation. But can we take it that two logics are identical if they
share the direct inference relation and have the same inference to inference rules
admissible?

The answer is no: the landscape here depicted is itself a small region in a larger
one. For this sort of inquiry has been extended very far in recent years (see especially
Porter 2021).
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Notes
1I say “essentially” for initially the axioms were specific sentences, and there was therefore

the additional rule of Substitution. After von Neumann (1927) introduced axiom and rule
schemata, so that any single axiom was replaced by infinitely many of the same syntactic
form, the rule of Substitution was superfluous.

2For a three-valued logic with 1, N, 0 let 1, 0 behave in the classical manner, and for T as
described, but assign N to any complex sentence in which one of the components has value
N (‘a single jot of rat’s dung spoils the soup’, as Alan Anderson was wont to remark). But see
also (van Fraassen 1968 and 1971, Ch. V, 4)

3As one of the participants in the congress pointed out, Thomason did not formalize belief
with a connective but with a predicate applicable to sentences, in the style of Montague’s
results about syntactic formalizations of modal discourse. My discussion here applies there
mutatis mutandis (see van Fraassen 2011).

4Principle 2 has appeared in the literature, though rarely, but with a different interpreta-
tion, such as that it characterizes a ‘stable’ reasoner, in the sense that suggests a commitment
not to doubt one’s own beliefs about what one believes. Taking modal statements as state-
ments of fact, however, 2] states factually that the agent’s beliefs about what they believe are
true, and that is the reading here maintained.

5Note: I will leave the reference to a specific truth-value assignment implicit here and
below. The careful discussion in which that reference is always explicit, and all other technical
details, are found in van Fraassen 2021.
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