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Abstract. The use of models of scientific theories should not be done without qualifications
about the mathematics being used to build the models. This looks obvious, at least for lo-
gicians, but generally, it is not to the philosopher of science. Thus, some details about this
point seem useful for both. Since any quick revision in the literature shows that in most cases,
mainly after the raising of the semantic approach (to scientific theories), the models are taken
to be set-theoretical structures, in discussing the issue we shall be concerned more with set
theories, the locus where the play is usually developed (yet sometimes unconsciously).
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To present a theory is to specify a family of structures,
its models

Bas van Fraassen 1980, p.64

[A] possible realization of a theory is a set-theoretical
entity of the appropriate logical type.

Patrick Suppes 2002, p.21

1. Introduction

It is presented here a quite particular way to understand the scientific enterprise (at
least for those called ‘physical sciences’ and mathematics) and scientific theories in
general (mainly in these fields). Agreeing that scientific activity is a conceptual activ-
ity, it is recalled that a simple collecting of concepts means nothing. For instance, in
classical particle mechanics, important concepts (or notions) are those of ‘particle’,
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‘position’, ‘time’, ‘mass’, ‘inner forces’, ‘external forces’, among others, such as ‘mo-
mentum’, ‘acceleration’, etc. But, what can we do with these concepts? Of course, we
need to organize them, since we intend to say that ‘every particle has a mass’, that
‘the sum of the inner forces with the external forces of a particle in any instant of time
is equal to the second derivative of the position relative to time’, and so on. In the
same vein, if we admit that Euclidean geometry can be described from the concepts
of point, line, and plane, right angle, parallel lines and etc., then we need to relate
them by sentences such as ‘two distinct points have just one line in common’, ‘paral-
lel lines have no point in common’, and so on. In other words, scientific knowledge
is not only conceptual knowledge, but structured conceptual knowledge (Krause and
Arenhart, 2017).1 How do we organize the chosen notions that will base our theory?
The answer is immediate: we do it by the formulation of the theory’s postulates or
axioms.

Together, the postulates define a class of structures, the models or the realisations
of the theory. For most of the standard theories, such as those of mathematics, physics
and much more, the defined structures are sets in a standard set theory, such as the
ZFC system (Zermelo-Fraenkel with the Axiom of Choice). Firstly, the reader of course
should notice that we are speaking of the axiomatic method. The class of models
of a theory has its own ‘model’, which is an abstract mathematical structure that
shows how the models are to be, defining an species of structures they belong to (more
on this below). What we are trying to say is that the abstract notion of structure
is essential in the scientific enterprise and also in the mathematical description of
scientific theories, which in standard cases corresponds to presenting a set-theoretical
predicate, as indicated in Suppes’ quotation at the beginning.2

Although a scientific theory is usually born from a motivation,3 after its devel-
opment as an axiomatic theory it becomes autonomous from the original field that
motivated its development, becoming an abstract mathematical entity that may be
interpreted differently from the original motivation. Take for instance the natural
numbers 0, 1, 2, . . . , which we use daily in the supermarket and notice that this se-
quence can be characterized by a first-order language whose ‘typical’ structure is of
the form N = 〈N , s, 0̂〉, where N is a non-empty set, s is an injective function from
N to N and 0̂ ∈ N . These notions are linked (structured) by Peano’s axioms. The
standard interpretation considers the set N of the natural numbers, the operation
s(x) = x + 1 and 0̂ being 0. But there exist also other interpretations, say taking the
domain yet as N but now s(x) = x+2 and 0̂ as 1; Peano’s axioms are true4 also in this
structure. As we see, in mathematics the different ‘realizations’ can come from other
abstract structures, while in science it is expected that they come from some outside
‘reality’. But this raises a huge problem to be considered below (see Section 5).

Anyway, the former structure gives origin to a class of mathematical structures,
the models of the theory (described by the axioms). We refer to a class of structures
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because, in general, such a collection is not a set in standard set theories; for instance,
although any real vector space can be seen as a set of a theory such as the ZFC system
(the Zermelo-Fraenkel set theory with the Axiom of Choice, see Fraenkel, Bar-Hillel
and Levy 1973), the collection of all real finite-dimensional vector spaces is not a set
of ZFC; we shall explain this important detail later (Section 5).

Let us consider the following question: can we believe the two sentences put
in the preamble? They were made by two authorities in the field, so the chances
are great that they are to be agreed, independently of any fallacy by the appeal to
authority. Really, in both quotations, there are some hidden notions that, for certain
kinds of analysis (philosophical), should be made explicit and as we shall see, they
cannot be taken without considering the contexts. Thus, this paper is written in order
to consider the following questions at least:

(1) What is a structure? (as in van Fraassen’s quotation, but in his (van Fraassen
1980) he does not say what a structure is supposed to be)

(2) What is a model? (“a structure which satisfies the axioms of a theory” van
Fraassen 1980, p.43)

(3) Where do they live? That is, where the models are constructed? (no one of
them considers this explicitly; Suppes refers to naïve set theory).

(4) What kind of things do models model? (wide discussion)
(5) Why do we usually consider set theory and not category theory or higher-

order logic, or perhaps a still different framework? (no clear answer).

We hope to provide a way to understand these important questions from a par-
ticular perspective. Let us move.

2. Structures

The word ‘structure’ has many senses and is used in different contexts, from linguistic
to architecture and chemistry. But here we shall be occupied with the mathematical
sense of the term since we are pursuing the quotations that motivate this paper. In
our basic logic courses, we usually learn something about logic systems starting from
a certain formal language, to which it is later given an interpretation, which means
to define a mathematical structure. For first-order systems, an interpretation consists
of a non-empty domain (as we shall assume here) and an interpretation function,
which attributes to the non-logical symbols of the language something related to the
elements of the domain (see Mendelson, 1997). But in general, in science and even
in mathematics we proceed from the other way around. The case of arithmetics given
above is a good example; we know in advance what we intend to organize, or at least
we think that we know; in this case, the sequence of the natural numbers.5 We could
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also be interested in the set of the real numbers under its usual order and operations,
or the system of classical mechanics, the theory of natural selection, and so on. That
is, we start with the structures and then we try to find a language for speaking of that
structure, at least in principle, and later realize that the axiomatics we have elaborate
is open to ‘other’ interpretations.6

We need first to acknowledge that mathematics and scientific theories require
more than what we term order-1 structures.7 These are composed of one or more
domains and operations, relations and distinguished elements over these domains.
There are no relations whose arguments are also relations, for instance. But, in sev-
eral situations, we need to quantify over subsets of these domains or on relations
that relate not only the elements of the domain(s) but other relations and opera-
tions over these elements. For example, take topological spaces. A topological space
is a structure of the following species (see below for the term ‘species of structures’):
T = 〈D,τ〉 where D is non-empty and τ is a collection of subsets of D, the topology.
Some axioms must be obeyed by the elements of τ. Thus, we are involved with things
that do not relate the elements of the domain, but collections of sets of elements of D.

This is something the philosopher of science should take into account: most of
the scientific (and even mathematical) structures are not order-1 structures, and so
cannot be dealt with by standard Model Theory (Button and Walsh 2018). By the
way, we notice that there is no general model theory for higher-order structures. The
lesson is that the languages for speaking of most structures we can find in science
are also not elementary (first-order), and this appears also in mathematics. Typical
examples are well-orderings: a well-ordering over a set S is a binary relation R over
this set so that (i) R is a partial ordering (irreflexive and transitive),8 and (ii) every
non-empty subset of S has a least element relative to R, that is, for every non-empty
X ⊆ S, there exists m ∈ X such that mRa for every a ∈ X .9 As we see, we need
to speak of for every subset of X , that is, we need to quantify over sets of elements
of the domain, and such a sentence is not elementary (first-order). As for the above
example of a topological space, a typical axiom is the following: for any two elements
A, B ∈ τ, their intersection A∩B does belong to τ. Of course, we are quantifying over
subsets of the domain, and not over its elements.

But, how do we get structures? As we have said before, very roughly speaking a
structure is an n-tuple formed by one or more sets and collections of distinguished
elements, relations and operations over these sets, or over any element of the scale
based on such sets, that is, it may comprise relations whose relata are also relations,
sets of sets, and so on. Perhaps the best way to grasp the idea is to have a look at
Bourbaki’s notion of species of structures, but without all the tedious details (which can
be found in Chapter 4 of his (Bourbaki, 2006)). We work in a set theory, such as the
ZFC system. Then consider a collection of principal non-empty sets E1, E2, . . . , En and
a collection of auxiliary sets A1, . . . , Am. For the sake of simplicity, we shall consider
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just three principal sets, E, F, G and two auxiliary sets A and B. Using set-theoretical
basic operations of cartesian product and power, we can get other sets, such as E ×
A, P (F × P (G)), P (E × E × E), etc. This way, we obtain a scale of sets based on
the principal and auxiliary sets we have chosen and can form the structures we are
interested in. We can introduce, as Bourbaki did, several related notions, such as
those of deduced and derived structures, homomorphism and isomorphism between
structures, canonic extensions of structures, and so on. But the development of these
topics is not relevant for our argumentations here.

Let us give some simple examples, starting with mathematics. More detailed cases
can be seen in da Costa and Doria (1992). Take groups, one of the most important
structures of all science (mathematics, physics, crystallography, learning, and so on).
Roughly speaking a group is a structure formed by just one principal set G and a
binary operation ‘∗’ over G which obeys well-known postulates: (i) ∗ is associative, (ii)
the operation admits a neutral element, and (iii) every element of G has an ‘inverse’
relative to ∗ which also belongs to G. Note that there are no auxiliary sets. Thus,
in order to grasp such a structure, we start with the set G, and then form the scale
G × G, then G × G × G and, finally (for our necessities), P (G × G × G). Now we
choose an element ∗ ∈ P (G × G × G) satisfying conditions which reflect the axioms
for groups,10 getting a structure of the form G = 〈G,∗〉. This development gives us
a class of structures, anyone of them modeling the group postulates. Each structure
of this species is a group, and the above abstract structure G = 〈G,∗〉 characterizes
a species of structures of groups (more details below).

Now let us consider vector spaces. Here we need a principal set of ‘vectors’ V and
one auxiliary set, the set F which stands for the domain of a fieldF = 〈F,+, ·, 0, 1, 〉.11

The other elements we need are the vectors’ ‘addition’, + ∈ P (V ×V ×V ) and the
multiplication of vectors by scalars, · ∈ P (F ×V ×V ), obeying the known postulates
we shall not repeat here. This qualifies the species of structures of vector spaces, that
is, structures of the form E = 〈V ,F ,+, ·〉.

More precisely, a species of structure Σ is defined by Bourbaki this way. We take
a collection of principal base sets x1, . . . , xn, a collection of auxiliary bases sets
A1, . . . , Am and a specific echelon construction schema he writes

S(x1, . . . , xn, A1, . . . , Am).

This is the notation for P (G × G × G) in the case of groups and P (V × V × V ) ×
P (F ×V ×V ) in the case of vector spaces.

An element s ∈ S(x1, . . . , xn, A1, . . . , Am) is the typification of Σ. The typification is
written by Bourbaki as a formula T (x1, . . . , xn, s). In our samples, this corresponds to
the selections we made: ∗ ∈ P (G×G×G) and 〈+, ·〉 ∈ P (V ×V ×V )×P (F×V ×V ).

Now let R(x1, . . . , xn, s) be a transportable formula with respect to the given typi-
fication, with the x i as the principal sets and the A j as the auxiliary sets. This formula
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corresponds to Suppes’ set-theoretical predicate, although there are differences in the
two approaches, as pointed out in Krause and Arenhart (2017) and in da Costa and
Krause (2020).12 This formula will be the axiom of the species of structures with typi-
fication T . If we select some particular sets E1, . . . , En, U so that both T (E1, . . . , En, U)
and R(E1, . . . , En, U) hold, then U is said to be a structure of species Σ (as a particular
group or a real vector space). Bourbaki’s first example is that of the species of struc-
tures of ordered sets, where from a set A, we get (by a suitable echelon construction
schema S) the set P (A× A) and the typification s ∈ P (A× A) (a binary relation on
A), with the axiom s ◦ s = s (reflexivity) and s ∩ s−1 = ∆A (transitivity), being ∆A
the diagonal of A (informally, the set ∆A = {(x , x) : x ∈ A}). Other examples can be
found in Bourbaki (2006), pp.263ff.

Thus, the restrictions imposed to s constitute the axioms of the species of structure
(in the case of groups, the restriction is that s (which we have called ‘∗’, must be
associative, admits a neutral element and that every element of the domain has an
inverse also in the domain).

All these examples of structures (and models) given above lie in a set theory, that
is, they are sets, and so do not cause any troubles for the practising mathematician
or for the philosopher. Next, we shall present a sample case study that will enable
us to emphasize the importance of considering metamathematics in presenting the
models of a physical scientific theory.

3. Orthodox quantum mechanics

Here we shall present a more well-developed example of an important physical theory
in order to enlighten the notions delineated above. We shall leave implicit the tedious
details of making explicit the species of structures and their constructions, proceeding
as the physicist does. By the way, this is what Bourbaki himself does; after detailed
developments in his book (Bourbaki, 2006), the rest of his oeuvre proceeds as the
standard mathematician does. For comments on his way of working, see Mashaal
(2006).

In the standard formulation of orthodox (non-relativistic) quantum mechanics
(henceforth, QM) via Hilbert spaces, states of quantum systems and observables over
them are considered. We notice in advance that the quantum systems themselves are
usually referred to, but do not play any relevant role in the axioms, to be summarized
below. This will constitute an important fact for our argumentation about the need
of considering the metamathematics where the models of the theory are being built.
Let us follow Krause and Arenhart (2017), chap.5 for a detailed presentation.

The primitive notions are system (quantum system), observable, and state. The
following postulates are them posed:
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Postulate 1 Let S be the set of physical (quantum) systems. To each physical system
s ∈ S we associate a Hilbert spaceH . Composite quantum systems are asso-
ciated with complex Hilbert spaces that are the tensor product of the Hilbert
spaces for each system, as usual.

Postulate 2 The one-dimensional subspaces of H denote the states the system may
be in. These spaces are called rays by the physicists. To simplify the notation,
usually, they are represented by unitary vectors ψ (or by |ψ〉 in Dirac’s nota-
tion) that generate these spaces. Hence, cψ, for a non-zero c ∈ C, represents
the same state as ψ, so as does ψ.c (this is a typical physicists’ abuse of no-
tation).13 These vectors are said to represent pure states of the system. It is
also postulated that linear combinations of pure states, that is, vectors of the
form ψ =
∑︁

n anψn, for an ∈ C (the linear combination may comprise any
finite number of vectors), called superpositions by the physicist, also denote
pure states. This assumption is called the Superposition Postulate.

Postulate 3 To each observable (the physical quantity that can be measured) A we
associate a self-adjoint operator Â overH

Postulate 4 The possible values of the measurement of observable A for the system
s in the state ψ lie in the spectrum (the set of eigenvalues) of the associated
operator Â. This was called the Quantization Algorithm by M. Redhead (1987),
p.5.

Postulate 5 Here we have the Born Rule. Given a system s, which is associated to
a 4-tuple σ as we describe below (Definition 3.1), let A be an observable to
be measured on the system in state ψ. First we take the Hilbert space of the
states of the system,H . Now, let {αn} be an orthonormal basis forH formed
by eigenvectors of Â (something that is possible to assume, since Â is diago-
nalizable14), so that there are complex numbers cn such that ψ =

∑︁

n cnαn,
with
∑︁

|cn|2 = 1. The cn are the Fourier coefficients cn = 〈αn|ψ〉, where 〈· | ·〉 is
the inner product. Let us denote the eigenvalues associated to the vectors αn
by an, that is, Âαn = anαn. Then we have the Statistical Algorithm (Redhead
1987, p.8): the probability that the measurement of observable A gives the
value an when the system is in the state ψ is

probψA (an) = |cn|2 = |〈αn|ψ〉|2

for the non-degenerate state (that is, all eigenvalues of Â are distinct); when
the operator is degenerate, the probability is obtained by summing the |c j|2

for all α’s associated to the same eigenvalue.15

Other possible states that are not pure are called mixtures. They can be briefly
described by means of statistical operators (or statistical matrices) (Redhead
1987, pp.15–6). We assign probabilities wk to a set of pure states {βk} in

PRINCIPIA 26(1): 39–54 (2022)



46 Décio Krause

which the system may be found, so that we have a statistical ensemble of sev-
eral quantum (possible) states. Let Pβp

denote the projection operator whose
range is the unitary sub-space generated by βp. Then the statistical operator
for the system becomes

ρ =
∑︂

k

wkPβk
,

and the expectation value of an observable A is given in terms of its Hermitean
associated operator by

〈A〉 := Tr(ρ · Â),

where Tr is the trace function.
Postulate 6 Let us call this the Dynamic Postulate. It says that if the system is in the

instant t0 in state ψ(t0)— here the notation is adapted in order to consider
the state as depending on time — then in a distinct time t the system evolves
to the stateψ(t) according to the Schrödinger equation (Penrose 2005, p.536;
Redhead 1987, p.12)

ψ(t) = Û(t)ψ(t0),

where Û is a unitary operator.
Postulate 7 This is the Collapse Postulate. It says that if immediately after the mea-

surement of observable A for the system in stateψ=
∑︁

n cnαn, gives the value
|cn|2 = |〈αn|ψ〉|2, then the system enters in the state described by the corre-
sponding eigenvector αn.

The above axiomatics gives rise to a mathematical abstract structure of the fol-
lowing kind:

(1) QM = 〈S, {Hi}, {Âi j}, {Uik},B(R)〉, i ∈ I , j ∈ J , k ∈ K

being I , J , K sets of indices, and where

(i) S is a collection16 whose elements are called physical objects, or physical sys-
tems.

(ii) {Hi} is a collection of mathematical structures, namely, complex separable
Hilbert spaces whose dimension is defined in the particular application of the
theory.

(iii) {Âi j} is a collection of self-adjunct (or Hermitian) operators over a particular
Hilbert space Hi .

(iv) {Uik} is a collection of unitary operators over a particular Hilbert space Hi

• (v)B(R) is the collection of Borel sets over the set of real numbers.
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Notice that postulates do not speak of space (Hilbert spaces are not where the
‘real’ things live; they are just the place for the state-vectors), something essential
when we intend to apply it to the ‘real world’. This notion is introduced as follows.

Definition 3.1 To each quantum system17 s ∈ S we associate a 4-tuple of the form

σ = 〈E4,ψ(x, t),∆,prob〉.

Here, E4 is the Galilean spacetime;18 each point is denoted by a 4-tuple 〈x , y, z, t〉
where x = 〈x , y, z〉 denote the coordinates of the system and t is a parameter rep-
resenting time, ψ(x, t) is a function over E4 called the wave function of the system,
∆ ∈B(R) is a Borelian,19 and prob is a function defined, for some i (determined by
the physical system s), inHi×{Âi j}×B(R) and assuming values in [0,1], so that the
value prob(ψ, Â,∆) ∈ [0, 1] is the probability that the measurement of the observable
A (represented by the self-adjoint operator Â) for the system in the state ψ(x, t) lies
in the Borelian set ∆. We can see the relationship between the state vector and the
wave function as follows. Let (x, t) denote the location operation at time t. Then we
put ψ(x, t) = 〈(x, t)|ψ〉, that is, the wave-function is described by the coefficients of
the expansion of the state vector in the orthonormal basis of the position operator.

It seems clear that the particular structures of this species are not order-1 struc-
tures, and doubtful can be transformed in some. We notice also that, contrary to the
standard approaches, we are here explicitly introducing the set S of quantum sys-
tems, and this brings us the following question: would S be really a set, a collection
of distinct objects, as Cantor has said? The answer is that this is disputable; the most
acknowledged interpretation (some variant of the Copenhagen interpretation) accept
that quantum objects of the same kind (electrons, protons, photons, etc.) are indis-
tinguishable, or indiscernible, and in some situations, cannot be discerned from each
other in any way. So, if the quantum system s is formed by entities of this kind, say a
cluster of bosons in a bosonic condensate, nothing we can suppose can discern them.
This poses a challenge to the semantics of our axiomatics, that is, the background
where the particular structures of the species (1) can be constructed.

Thus, we have proposed that S should be not a set of standard set theories such
as ZFC,20 but a quasi-set, an entity described by the theory of quasi-sets (Krause
1990, 1992; French and Krause 2006). In such a theory, collections of indiscernible
objects can be considered. Once more, the details do not concern us here; the in-
terested reader can consult French and Krause (2006), and Krause, Arenhart, and
Bueno (2022) for the corresponding philosophy.
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4. The role of the metamathematics

We have seen that the mathematical structures that serve as models of theories are
built in a certain metamathematical framework. We have also claimed that there is
no precise sense in attributing directly some physical object (that is, an object living
in our physical world) to the terms of the language (of the theory), for we cannot use
the rules of logic for dealing with such an association; what we have said is that we
need to consider some other mathematical structure which ‘represents’ the relevant
elements of the domain and then we use this structure as an interpretation of the
language of our theory, so we are apt to use the standard semantic rules.

But all of this is done within certain metamathematics. Here we schematize some
situations where the use of an informal set theory or some ‘standard’ set theory such
as the ZFC system may be put into parenthesis and questioned. Let us see.

The quantum case shown above tells us that in certain situations we need to have
some care with the (meta)mathematics where the relevant structures are to be built.
Really, in the Hilbert space formalism, one usually makes use of unbounded operators
over the relevant Hilbert spaces, such as those that stand for position, momentum or
energy.21 So, the metamathematics needs to be able to accept their existence. But
what happens if instead of a standard set theory (such as the ZFC system) or even
quasi-set theory, we use the so-called Solovay’s set theory (or Solovay’s ‘model’),
which is ZF (ZFC without the axiom of choice) plus DC, the Axiom of Dependent
Choice (that is, S = ZF + DC)? In such a theory, every linear operator over a Hilbert
space is bounded (Maitland-Wright, 1973); we would be in trouble for using the
above formalism. A well-documented case that not all models of ZFC are adequate
to support the development of quantum mechanics is given by the two papers by Paul
Benioff from 1976 (Benioff 1976a; 1976b).

The same would happen if instead of a standard set theory such as the ZFC sys-
tem we would make use of ZFA, the Zermelo-Fraenkel system with atoms, entities
that are not sets but which can be elements of sets (Suppes, 1960). The problem is
that we can construct ‘permutation models’ such as those of Läuchli, which enable
the construction of Hilbert spaces with no basis or then with bases of different car-
dinalities (Jech, 1977). Since the existence of bases is fundamental for the H-space
formalism, we would be again in trouble.

The third example is that one mentioned above, namely, the situation where S
(see again the structure (1)) is not to be counted as a set, an entity whose elements
can always (even if only in principle) be discerned from one another. As we have
said, in certain situations, collections of quantum objects cannot be discerned in any
way or, then, even if they have some distinctive value of some property, such as spin
in a given direction, in most cases we cannot know which is which, that is, which
quantum has a certain value for the property, and which one has a different value for
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the same property. They remain indiscernible.
Finally, an example involving mathematics. Think of a set theory such as the ZFC

system, axiomatized as a first-order theory. If consistent, it has models but is not
categorical, that is, its models are not isomorphic. The worst situation is this: where
these models are built? Notice that while the structures presented in the previous
section are sets of, say, ZFC or of quasi-set theory, the models of ZFC cannot be sets of
ZFC. This is impeded by the Second Incompleteness Theorem (look at Smith 2021,
chap.17, for a clear exposition you can surpass “without too many tears”). That is,
a model of a theory satisfying certain conditions of recursivity, expressiveness, and
consistency, cannot enable the constructions of models for itself. The models of a
theory like ZFC need to be considered in strong theories such as those involving
universes or (equivalently) assuming the existence of inaccessible cardinals. So, since
any theory of sets is also a ‘scientific theory’, we need to be careful in considering its
models.

5. Debts paid

In the introduction, we have promised to explain two points that are relevant to the
present discussion; here we pay the debt.

Physical theories and ‘reality’ A physical theory is not just a mathematical abstract
theory; physics is not mathematics. So, although a well developed physical theory is
elaborated to make reference to a certain domain of knowledge or a field of appli-
cation, it has a mathematical counterpart which is a purely abstract mathematical
structure to which interpretations can be done under the canons of standard logic,
which (once the axioms of the theory are true in the corresponding structure) turn
to be the models of the theory.

But, as discussed earlier, this mathematical structure (which in general can be
constructed in different ways) may express also ‘other models’. We choose one of
them to be the intended one, which by hypothesis stands for the mathematization of
the field of knowledge we had in mind when we started working. Here is where the
problem lies. In my opinion, in precise terms, we cannot ascribe to a certain term of
the language of the theory an element in our lab or in our surroundings; we do it
only informally. Logical precision, in my account, is impossible to get. How should
we do it? The only way could be to stick a tag in the object in which the name of
the term was written, but we know that this is impossible to do in most cases (for
instance, when the term is a derived one, such as the specific weight of a material,
which is the quotient of the weight by the unity of volume).
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Just as a parenthesis, I agree with M. L. Dalla Chiara and G. Toraldo di Francia in
that there is no distinction between theoretical terms and observable terms as in the
old logical empiricism (Suppe, 1977). According to them, all terms are ‘theoretical’,
even those that correspond to a supposed ‘direct observation’ with our eyes. Our eyes
are like lenses, and the thing we observe depends on several conditions; let us read
them:

Let us suppose that we are observing a fish in a basin. Do we observe it
directly, yet the light rays perform part of their trajectories in water? Very
probably we shall say that yes, we do it. But what if the basin is an aquarium,
so that part of the trajectory is done in the glass? Furthermore, what if part
of the glass is a little convex in such a way that the fish is seen a little bit
great? What is the glass is substituted by a lens? And what is instead of a
lens we have two lenses as microscopy? Dalla Chiara and Toraldo di Francia
(1981), p.39.

They conclude that “it is absurd to think that the distinction between direct obser-
vation and observation throughout an instrument has a precise sense and that should
have importance in principle” and that in reality there is no distinction between ob-
servable and theoretical terms: all of them are theoretical.

Going back to our discussion, in ascribing meaning to a (theoretical) term of our
scientific language, we need to make another previous construction, one that repre-
sents the field of knowledge we are dealing with. In other words, there exists a middle
term between theory and ‘reality’, namely, the structuring this ‘reality’ in a mathe-
matical structure so that we can apply the rules of standard semantics to associate
meaning to the terms of the language. In short, we never attribute (meaningfully) to
the term ‘alpha particle’ that thing we supposedly observe in our laboratory, say in
a bubble chamber, since we do not ‘observe’ it in any way, but just indications of its
existence. What we do, to be precise is to construct a mathematical representation
(of course in terms of structures) of an alpha particle and associate it to the term of
our language as being this entity, which stands for an alpha particle, according to the
semantic rules. This is what we have said before that between theory and ‘reality’
there is an intermediary usually hidden entity, a mathematical structure that repre-
sents that reality and which can interact, via standard semantics, with the theory.
Theory and reality, strictly speaking, never interact.

There is a cluster of questions to be discussed here, but we shall leave them for
another work. The resume is that the association of physical theories and ‘reality’
is never direct, but pass by an intermediary mathematical representation of such a
‘reality’, for if not the semantic rules cannot be applied.
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Classes of models Suppose we have a theory T and letC denote its class of models.
What is C ? Suppose T is the theory of groups. Any model of T is a group, and a
group, as we have seen, is a structure of the form G = 〈G,∗〉. It is easy to realize,22

as we have done before, G is a set, say in ZFC. But the collection of all groups (all
models of the theory) does not constitute a set of ZFC. It is what mathematicians call
a proper class and exist not in ZFC, but in some strong theory such as the system NBG
(von Neumann, Bernays and Gödel, see Mendelson 1997, chap.4). In this system, all
entities are classes, and those classed that are members of other classes are called sets
and coincide with the sets of ZFC. The others are proper classes. So, in order to accept
a phrase as van Fraassen’s in our beginnings, we need to consider all the models of
T and this of course requires us to be aware of the possibility of their existence. As
we see, metamathematics matters, and for certain philosophical questions, should be
not taken arbitrarily.

6. Note added in proof

I would like to say something more about the structure introduced in the definition
(3.1). There, we said that to each quantum system s ∈ S we associate a structure
of that type, but this is not strictly correct. Well, it is partial. In order to justify the
reasons, we follow Leslie Ballentine (1998), p.99. The wave function ψ(x, t) can
be said to represent something propagating in what Ballentine calls “the ordinary
space”, namely,R3 (recall that the support of E4 isR3×R) only for one-particle states,
when the configuration space is isomorphic to the ordinary space. But, when we have
multi-particle systems (suppose N of them), the same reasoning would conduce to
N wave-functions interacting in ordinary space, something that cannot be accepted
(Schrödinger’s equation shows that this is not the case, as recalled by Ballentine).
Really, the wave-function of the whole system is a function of space and time but in a
large dimensional space (of dimension 3N), the configuration space. So, we need to
take some care in discussing whatever ‘reality’ we associate with the wave-function
(by the way, this theme is still being debated in the philosophy of physics literature).
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Notes
1Beyond ‘point’, ‘line’ and ‘plan’, Hilbert used three more relations as primitive, namely, be-

tweenness, lies on, and congruence (between points and lines and between points and planes);
see Pogorelov (1987).

2A set-theoretical predicate is a formula in the language of set theory that congregates the
specific postulates of the theory; more on this below.

3Of course nothing impedes that someone wakes up on a certain day and decides to ‘create’
a theory from nothing, a purely formal ‘theory’, although in general, we have a motivation
for doing that. Anyway, to consider this possibility, we would be in need of discussing the
meaning of ‘theory’.

4In Tarskian sense; see Mendelson (1997), chap.2.
5This is one of the most interesting and important results of axiomatization, namely, the

noticing that in general there is more in the heavens than we noticed at the start. The typical
example is first-order arithmetics, which has presented us with non-standard models; in these
models, there are ‘natural numbers’ which are different from those of the above sequence (see
Oliveira 2010).

6For more details, see Krause and Arenhart (2017).
7We speak of ‘order-n’ structures to avoid confusion with the order of languages since in

first-order languages (such as that of ZFC) we can define higher-order structures (n> 1).
8See Enderton (1977), p.168.
9mRa is an abbreviation for 〈m, a〉 ∈ R. See Enderton (1977), p.171.

10Notice that an element of P (G×G×G) is a collection (a set) of triples of elements of G.
Intuitively, we can reason this way: from all triples 〈a, b, c〉 of elements of G, we select those
where c = a ∗ b to compose ∗, that is, it is the result of the operation ∗ between a and b (in
this order). For instance, for the addition of real numbers, we select fromP (R×R×R) those
triples 〈a, b, c〉 such that c = a+ b.

11Here, ‘+’ and ‘·’ are the addition and multiplication of the elements of F , and should not
be confounded with the addition of vectors and the multiplication of vectors by scalars (the
elements of F); mathematics is “the art of giving the same name to different things”, said
Henri Poincaré.

12Roughly speaking, in a transportable formula there cannot be imposed restrictions what-
ever on the principal sets occurring in the formula. The formula must hold in all cases of
substitutions. So, in the case of vector spaces, we should not use as the field a particular
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case as the field R of the real numbers but, as we have done, a general field F . The case of
real vector spaces would become a particular case, a structure of that species (of (general)
vector spaces). A field is characterized by an abstract structure of the following species: we
have a non-empty domain F and two binary operations over F , namely ‘+’ and ‘·’, obeying
well-known postulates (Maclane and Birkhoff 1968, p.133).

13The reason for this to be an abuse of notation is easy to explain. The operation of mul-
tiplication of a vector by a scalar (a complex number) is defined to be multiplication to the
left, that is, it is a function from C×H toH . If we want that this also represents a function
fromH ×C toH , we need to say it explicitly.

14These are operators such that there is some basis for the vector space so that the matrix
representing the operator is a diagonal matrix.

15For details, see Redhead (1987), p.8.
16Below we shall question whether this collection can be considered as a set of ZFC.
17But see the Note Added in Proof at the end.
18For details, which do not interest us here, see Penrose (2005), chap.17.
19These are particular subsets of the real number line, suitable for the axiomatics to hold,

but whose definition is not relevant for us here.
20This idea was also posed by Dalla Chiara and Toraldo di Francia (1993).
21A bounded operator T is a linear operator over the Hilbert space so that there exists a

natural number N such that for all vectors α, we have that ∥T (α)∥ ≤ N∥α∥. If T is not
bounded, it is unbounded.

22It is enough to pay attention to the way the structure was constructed within ZFC.
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