

Family Health Strategy: physical fitness from the city of Minas Gerais

Estratégia Saúde da Família: aptidão física de usuários de postos de saúde de uma cidade de Minas Gerais

Letícia Nogueira Diniz¹

 <https://orcid.org/0009-0001-1920-4607>

Paulo Vitor Aparecido Rezende¹

 <https://orcid.org/0009-0000-8675-0029>

João Pedro Santiago Santos¹

 <https://orcid.org/0009-0007-6496-6196>

Yan Leo de Melo Vieira^{1,2}

 <https://orcid.org/0009-0008-9965-1343>

Ana Vitória Leca Lara Campos¹

 <https://orcid.org/0009-0007-5325-5786>

Ana Paula Pereira Martins¹

 <https://orcid.org/0009-0003-3096-2446>

Lucas Rios Drummond¹

 <https://orcid.org/0000-0002-6042-7757>

Lucas Túlio de Lacerda¹

 <https://orcid.org/0000-0002-0735-8131>

Camila Fernanda Cunha Brandão^{1,2}

 <https://orcid.org/0000-0002-3330-8007>

1 Universidade do Estado de Minas Gerais – UEMG. Departamento de Educação Física. Divinópolis, MG. Brasil.

2 Universidade de São Paulo – USP. Faculdade de Medicina de Ribeirão Preto – FMRP. Departamento de Clínica Médica. Ribeirão Preto, SP. Brasil.

Received: November 07, 2024

Accepted: April 04, 2025

How to cite this article

Diniz LN, Rezende PVA, Santos JPS, Vieira YLM, Campos AVLL, Martins APP, Drummond LR, Lacerda LT, Brandão CFC. Family Health Strategy: physical fitness from the city of Minas Gerais. Rev Bras Cineantropom Desempenho Hum 2025, 27:e97169. DOI: <https://doi.org/10.1590/1980-0037.2025v27e97169>

Corresponding author

Camila Fernanda Cunha Brandão. Laboratório de Pesquisa em Metabolismo, Fisiologia e Exercício Físico – LAPEMFE, Universidade do Estado de Minas Gerais – UEMG. Av. Paraná, 3001, bloco 6, sala 608, 35501-170, Jardim Belvedere I, Divinópolis (MG), Brasil. E-mail: camila.brandao@uemg.br

Abstract – The present study evaluated the level of physical activity and physical fitness of users of Family Health Strategy programs in the city of Divinópolis-Minas Gerais, which does not have Physical Education professionals. The 390 users of Family Health Strategy programs participated (145 men and 245 women), aged between 18 and 60 years. They were evaluated regarding their level of physical activity and health aspects, anthropometric measurements, body composition, and physical fitness tests: flexibility (sitting and reaching), muscular resistance (abdominal and arm flexion), and cardiorespiratory fitness. Of the participants, 71% practiced physical activity, good flexibility levels, and muscular strength resistance but had low cardiorespiratory fitness. Regarding body composition, men had a higher fat-free mass and lower body fat compared to women. Besides, 25% are classified as obese, 46% have chronic diseases, 29% are sedentary or irregularly active, 63% have already received instructions to perform physical exercise at health centers, and 99% understand the importance and need for Physical Education Professional in programs. Users practice physical activity but have low cardiorespiratory fitness and body composition due to a lack of targeted physical exercise. Although users receive guidance on practicing physical activity, they understand the need for the presence of a Physical Education professional in programs to perform physical exercise.

Key words: Sedentary behavior; Cardiorespiratory fitness; Unified Health System; Noncommunicable diseases; Cardiometabolic risk factors.

Resumo – O objetivo do estudo foi avaliar o nível de atividade física e a aptidão física de usuários de programas de Estratégia Saúde da Família da cidade de Divinópolis-Minas Gerais, que não possuem profissionais de Educação Física. Participaram 390 usuários de programas Estratégia Saúde da Família (145 homens e 245 mulheres), com idade entre 18 e 60 anos. Foram avaliados quanto: ao nível de atividade física e aspectos de saúde, medidas antropométricas, composição corporal, testes de aptidão física – flexibilidade (sentar e alcançar), resistência muscular (abdominal e flexão de braço) – e aptidão cardiorrespiratória. Dos participantes, 71% praticam atividades físicas, bons níveis de flexibilidade e resistência muscular, no entanto, apresentaram baixa aptidão cardiorrespiratória. Em relação à composição corporal, os homens apresentaram maior nível de massa livre de gordura e menor gordura corporal em comparação com as mulheres. Além disso, 25% estão classificados como obesos, 46% possuem doenças crônicas, 29% são sedentários ou irregularmente ativos, 63% já receberam indicações para realizar algum exercício físico nos postos de saúde, e 99% entendem a importância e necessidade do profissional de Educação Física nos programas. Os usuários são praticantes de atividade física, mas possuem baixo nível de aptidão cardiorrespiratória e composição corporal, o que pode ser devido à falta de exercício físico programado. Isso porque, apesar de os usuários receberem orientações para a prática de atividade física, compreendem a necessidade da presença do profissional de Educação Física nos programas para a realização de exercício físico.

Palavras-chave: Comportamento sedentário; Aptidão cardiorrespiratória; Sistema Único de Saúde; Doenças não transmissíveis; Fatores de risco cardiométrabólico.

Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution license (<https://creativecommons.org/licenses/by/4.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Physical inactivity is an independent risk factor for cardiometabolic disease and all-cause mortality^{1,2}. In Brazil, 45% of the population practices inadequate physical activity. Furthermore, 66% of the Brazilian population demands more than 3 hours of their free time in front of screens, which represents a high rate of sedentary behavior³.

Sedentary behavior can promote a reduction in physical fitness levels, which will make it difficult to carry out daily activities, and low levels of flexibility, muscular strength, and cardiorespiratory fitness, which are also risk factors for the development of Chronic Diseases No Transmissible (NCDs) and are associated with higher morbidity and mortality rates^{4,5}.

Despite the wide variety of actions and programs related to physical activity widely encouraged by the Ministry of Health, it is observed that the low effectiveness of these strategies is still worrying⁶. Among the factors related to low effectiveness, we can find the lack of motivation to practice and the lack of Physical Education Professionals in these spaces. Thus, studies that diagnose the main risk factors, and how they have been prevented, can facilitate future treatments and structuring of public health actions.

Thus, the objective of this study was to evaluate the level of physical activity and physical fitness of users of Family Health Strategy programs in Divinópolis-MG city, which does not have Physical Education professionals.

METHODS

Ethical aspect

This exploratory and cross-sectional study was approved by the Research Ethics Committee of the State University of Minas Gerais, Divinópolis, by CNS Resolution 466/2012, 510/2016 and 580/2018 (process n. 42932921.3.0000.5115). The procedures to be adopted, risks and benefits were explained and were only part of the research after signing the Free and Informed Consent Form.

Population and sample

The study was developed in the city of Divinópolis, Minas Gerais-MG, with approximately 238,230 population, of which 110,400 population are users of the Family Health Strategy Program (ESF), representing 46% of the population. Thus, 390 users participated in the study.

The posterior sample calculation was carried out using version 3.1.7 of the G.Power program based on the statistical treatment foreseen for the present study. An alpha error of 0.05 was used sample size of group 1 (112 women) and group 2 (92 men). For the effect size variable, the value of 1.49 was used, obtained through the mean and standard deviation values using as a reference the fat percentage data from the collected sample (variable with the highest coefficient of variation in the study). Thus, the program calculated a statistical power greater than 0.99, based on the sample number and statistical analyses used in the present study⁷.

Participants were recruited voluntarily, for convenience, through the dissemination of the research in folders and social networks, following inclusion

criteria: being patients cared for by the selected ESF, men and women, aged between 18 and 60 years old, and without any positive response to the Physical Activity Readiness Questionnaire (PAR-Q)⁸ and no physical impediment to performing the physical tests.

Measurements

Sociodemographic aspects and health

A questionnaire was used to stratify the sample by age group, sex, history of illnesses, alcohol consumption, and smoking.

International Physical Activity Questionnaire (IPAQ)

It was used to assess the level of physical activity, and participants were classified according to the questionnaire guidelines⁹.

Anthropometric measurements and body composition

The body weight and height were assessed using a digital scale with a precision scale of 100g (Welmy®). Subsequently, the Body Mass Index (BMI) was calculated and the participants were classified accordingly¹⁰. Waist and hip circumference measurements were taken with a flexible, inextensible measuring tape, with a precision of 0.1 cm, in an upright position, using conventional techniques¹¹. Body composition measurements (percentage of fat-free mass, body fat, and skeletal muscle mass) were carried out using tetrapolar electrical bioimpedance (SANNY®), calibrated, by the manufacturer's regulations¹².

Flexibility

It was carried out through the sit and reach test, using the Wells bench¹³.

Muscular strength resistance

An arm and abdominal flexion test was performed to assess muscular strength resistance, which required maximum repetitions to be performed within 1 minute¹³.

Cardiorespiratory fitness

The Cooper test was performed after the Maximum Oxygen Consumption (VO₂ max) was estimated¹³.

Data analysis

The categorical and descriptive data are presented in the relative frequency (%), mean and standard deviation. For statistical analysis, the normality of the data was verified (Shapiro-Wilk test), and a comparative analysis was carried out between genders (Unpaired T test or Mann-Whitney test). The SPSS®

statistical software version 20.0 was used to perform data analysis and statistical significance was $p < 0.05$.

RESULTS

The 390 participants aged 34 ± 13 years were evaluated: 145 men (32 ± 12 years) and 245 women (34 ± 13 years). Regarding the Level of Physical Activity, 71% are considered active and very active, and 29% are sedentary and irregularly active, with an equivalence between females and males. Regarding the BMI classification, 25% of the studied population is classified as “obese”, and women have higher numbers when compared to men (Table 1). Furthermore, 46% of participants have some type of chronic disease, 22% of participants are smokers, and 60% consume alcoholic beverages, with higher rates for males.

Table 1. Classification of Body Mass Index (BMI) and Physical Activity Level of users of Family Health Strategy Programs (ESF) in the city of Divinópolis, MG.

Classifications	Total (%)	Men (%)	Women (%)
BMI			
Under weight	3	5	1
Eutrophic	44	39	54
Overweight	28	39	25
Obesity	25	17	20
Physical Activity Level			
Sedentary	7	5	9
Irregularly active	22	23	21
Active	40	37	42
Very active	31	35	28

Note. BMI: body mass index; Classification according to the World Health Organization (WHO)¹⁴; Obesity was considered BMI $>30 \text{ kg/m}^2$; Sample size = 390 participants (245 women and 145 men).

For the assessment of health-related physical fitness, only 204 users completed (112 women and 92 men). In Table 2, it is possible to note the variables related to anthropometric measurements and body composition. Men have a lower percentage of fat and a higher percentage of fat-free mass and skeletal muscle mass when compared to women ($p < 0.05$). Thus, women with a fat percentage are classified as moderately high and men as adequate. Regarding waist circumference and waist-hip ratio, men have higher values than women, but both are within the appropriate classification.

In Table 3, data relating to health-related physical fitness is presented, observed in both genders for the flexibility test, they are classified as “excellent”. As for muscular strength resistance, they are classified in the abdominal and arm flexion tests, respectively, as “excellent” and “above average”. While the Cooper test classification is “above average” for women and “very weak” for men, as well as VO₂ max, for which women are classified as “regular” and men “very weak”.

Furthermore, 59% said they participate in systematic physical exercise, 42% are monitored or supervised by a Physical Education professional, 50% stopped performing physical exercises (systematic) with the beginning of the COVID-19 quarantine, 63% have already received instructions to perform some physical exercise (by a physiotherapist, doctor, nutritionist, nurse, and others at health centers) and 99% acknowledged understanding the importance of the participation of physical education professionals in ESF posts.

Table 2. Anthropometric and body composition of users of Family Health Strategy Programs (ESF) in the city of Divinópolis, MG.

Variables	TOTAL	WOMEN	MEN	p-value
	M ± DP	M ± DP	M ± DP	
Weight (kg)	79 ± 14	63 ± 11	77 ± 13	< 0.001
Height (cm)	167 ± 0.1	162 ± 0.1	174 ± 0.1	<0.0001
BMI (kg/m ²)	24 ± 4	24 ± 4	25 ± 5	0.348
Waist Circumference (cm)	78 ± 11	74 ± 10	82 ± 10	<0.0001
Hip Circumference (cm)	99 ± 8	98 ± 9	99 ± 7	0.179
Waist/Hip Ratio	0.78 ± 0.1	0.75 ± 0.1	0.82 ± 0.1	<0.0001
BF (%)	23 ± 10	28 ± 7	17 ± 8	<0.0001
BF (kg)	16 ± 9	19 ± 8	14 ± 9	<0.0001
FFM (%)	77 ± 10	71 ± 7	83 ± 8	<0.0001
FFM (kg)	53 ± 12	45 ± 5	63 ± 8	<0.0001
MME (%)	40 ± 8	35 ± 6	46 ± 6	<0.0001
MME (kg)	28 ± 8	22 ± 5	35 ± 5	<0.0001

Note. M ± DP: Data expressed as mean ± standard deviation; Statistical analysis: Mann-Whitney test; Statistical significance, p< 0.05; FFM: fat-free mass; BF: body fat; MME: skeletal muscle mass; BMI: body mass index; Sample size = 204 participants (112 women and 92).

Table 3. Physical fitness of users of Family Health Strategy Programs (ESF) in the city of Divinópolis, MG.

Variables	GERAL	MEN	WOMEN	p-value
	M ± DP	M ± DP	M ± DP	
Flexibility (cm)	23 ± 9	22 ± 8	24 ± 10	0.092
Cooper (meters)	1803 ± 467	1857 ± 456	1759 ± 473	0.070
VO ₂ max (ml/kg/min)	23 ± 10	30 ± 10	28 ± 11	0.070
Push-up (rep)	26 ± 30	29 ± 12	23 ± 13	0.0005
Abdominal (rep)	37 ± 17	40 ± 12	35 ± 10	0.436

Note. M ± DP: Data expressed as mean ± standard deviation; Statistical analysis: unpaired t-test or Mann-Whitney test; Statistical significance, p< 0.05; VO₂max: maximum oxygen consumption; Sample size = 204 participants (112 women and 92 men).

DISCUSSION

The present study evaluated the level of physical activity and physical fitness of Family Health Strategy programs users in Divinópolis-MG city, which does not have Physical Education professionals. In this way, it was possible to observe that 71% of users practiced physical activities. However, they had low cardiorespiratory fitness, despite good levels of flexibility and muscular strength resistance. Regarding body composition, men had higher Fat-Free Mass and lower Body Fat, different from women. Furthermore, it was 25% are classified as obese, 46% have chronic diseases 29% are sedentary or irregularly active, 59% participate in a targeted activity related to physical exercise, 63% have already received instructions to perform some physical exercise in health posts, and 99% understand the importance and need for Physical Education professionals in Family Health Strategy posts.

High levels of physical fitness are associated with lower mortality and better quality of life in the adult population⁴. It was possible to observe low cardiorespiratory fitness for females and males. When comparing muscular flexibility and resistance, the majority had very good results.

The body mass is sensitive to changes resulting from factors such as the level of physical activity¹⁵. In the same sense, the study by Kochman et al.¹⁶ observed better physical fitness in people with a lower impedance index and greater fat-

free mass. Just as another study shows that lower levels of physical activity and physical fitness are associated with higher body weight and BMI¹⁷.

Regarding body composition, when the analysis was carried out according to gender, it was possible to observe that men had higher Fat-Free Mass and lower Body Fat, different from women. Furthermore, women tend to be less active when compared to men¹⁸. It is common for there to be a relationship with socioeconomic level, there is a greater possibility of involvement in physical activity when the person has a better condition, can outsource unpaid work, and has a greater chance of engaging in exercise¹⁹. And the more active you are, there is a tendency towards better fitness and body composition.

Physiologically, there are marked differences between the genders regarding exercise, men have greater muscle mass in absolute and relative terms (when divided by total body weight), while women have a higher percentage of fat. Furthermore, even with the same composition of muscle fibers, the volume of each fiber is greater in men, generating greater power and muscular resistance²⁰. Another study shows that peripheral muscle fatigue due to exercise is greater in women than in men, which results in lower performance in physical tasks. Regarding absolute muscular strength, that of the average woman is 63.5% of the strength of a man¹⁴. These differences may justify the quantitative differences in the muscular resistance tests performed.

Regarding the level of physical activity, we found a high percentage of active and very active people. In another study conducted in basic health units (UBS) in the city of Belo Horizonte, Minas Gerais, UBS users showed a 33.7% level of sedentary lifestyle²¹, corroborating the data in municipalities in the south and northeast of Brazil covered by UBS showed that 31.8% of adults are sedentary²². However, the current study presents a lower percentage of sedentary people, and people cared for within the scope of public health have a good level of physical activity. However, the questionnaire used covers activities such as transport, work, and leisure, beyond exercise, which may favor the high number of active people.

When analyzing the lifestyle of this population, it was observed that 22% of participants are smokers. Smoking is also considered a risk factor for the development of diseases and is estimated to be responsible for approximately 5.4 million deaths annually²³. According to data presented by VIGITEL², 9.5% of the adult Brazilian population is a smoker, 11.7% among men and 7.6% among women. In our study, we did not find high levels of smoking in the studied population, and we also observed a higher number of smokers among men.

The consumption of alcoholic beverages is present in the lives of 60% of the population. Alcohol and drug abuse can have negative effects on motor skills and coordination abilities²⁴. A study demonstrated a higher prevalence of male patients, dependent on multiple substances, with a low level of education, and who did not practice regular physical activity. The longer it is used, the worse the results in agility and balance tests. It is possible to conclude that both advancing age and longer dependence worsen performance in the variable's agility and body balance²⁴.

Furthermore, a sedentary lifestyle associated with low physical fitness may be directly related to the development of other chronic diseases, including those already diagnosed⁴. Corroborating these data, the study by Fletcher et al.²⁵ observed significant associations between a sedentary lifestyle, the presence of total and abdominal obesity, and a greater occurrence of arterial hypertension. Another study shows that in addition to physical fitness being

related to improved cardiovascular health, the physical fitness index is associated with practice time and supervision²⁶. Thus, evidence shows that physical activity can reduce the risk of premature mortality by at least 20.0% to 30.0% for more than 25 types of chronic diseases²⁴.

Although the data shows that professionals working in primary care posts provide guidance and encourage the practice of physical activity, the presence of a Physical Education professional in these posts is necessary. In the same sense, the study by Moraes et al.²⁷ presents results that suggest that aspects of professional training and performance and the level of physical activity of professionals contribute positively to counseling actions for physical activity. Furthermore, when comparing the feasibility and cost-benefit of interventions with physical activity guidance and counseling and interventions with supervised physical exercise in primary care, it is observed that counseling is financially viable, but not as effective in promoting physiological changes. and physical interventions such as supervised physical exercise²⁸.

CONCLUSION

The users evaluated are practitioners of physical activity but have a low level of cardiorespiratory fitness and body composition, which may be due to the lack of supervised physical exercise. Because, although users receive guidance for practicing physical activity, they observed the need for the presence of a Physical Education professional in programs to carry out physical exercise.

In this sense, good physical activity is ideal for chronic disease prevention and treatment. It influences physical fitness and body composition, and the presence of a Physical Education professional in Primary Care and Health can assist in this process.

This study may help to understand the population's needs and help prevent specific risk factors. From this, proposals must be created to help prevent diseases. This study had as a limitation the lack of adherence of all participants in all phases of the study, in which only 52% carried out health-related physical fitness assessments.

Compliance with ethical standards

Funding

This research received grant from funding agencies: Productivity Researcher at UEMG – PQ/UEMG, Technical and Financial Cooperation nº 154 (Physical Education in Extension), Minas Gerais State Research Support Foundation - FAPEMIG (APQ-02960-22; APQ-03029-23 and APQ-03316-23).

Ethical approval

Ethical approval was obtained from the local Human Research Ethics Committee – Minas Gerais State University, Divinópolis and the protocol (no. 42932921.3.0000.5115) was written in accordance with the standards set by the Declaration of Helsinki.

Conflict of interest statement

The authors have no conflict of interests to declare.

Author Contributions

Conceived and designed experiments: CFCB; Performed experiments: LND, PVAR, JPSS, YLMV, AVLCC, APPM; Analyzed data: LND, PVAR, LTL; Contributed with reagents/materials/analysis tools: LRD, LTL, CFCB; Wrote the paper: LND, LRD, LTL, CFCB.

REFERENCES

1. Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. *Ann Intern Med.* 2015;162(2):123-32. <http://doi.org/10.7326/M14-1651>. PMid:25599350.
2. Brasil. Ministério da Saúde. Vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico (Vigitel Brasil) [Internet]. Brasília; 2021 [cited 2023 Oct 23]. Available from: <https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/svs/vigitel/vigitel-brasil-2021-estimativas-sobre-frequencia-e-distribuicao-sociodemografica-de-fatores-de-risco-e-protecao-para-doencas-cronicas>
3. Barry VW, Baruth M, Beets MW, Durstine JL, Liu J, Blair SN. Fitness vs. fatness on all-cause mortality: a meta-analysis. *Prog Cardiovasc Dis.* 2014;56(4):382-90. <http://doi.org/10.1016/j.pcad.2013.09.002>. PMid:24438729.
4. Christofolletti M, Streit IA, Garcia LMT, Mendonça G, Benedetti TRB, Papini CB, et al. Barreiras e facilitadores para a prática de atividade física em diferentes domínios no Brasil: uma revisão sistemática. *Cien Saude Colet.* 2022;27(9):3487-502.
5. Brandão CFC, Carvalho FG, Souza AO, Franco MVMJ, Batitucci G, Lima CAC, et al. Physical training, UCP1 expression, mitochondrial density, and coupling in adipose tissue from women with obesity. *Scand J Med Sci Sports.* 2019;29(11):1699-706. <http://doi.org/10.1111/sms.13514>. PMid:31282585.
6. Brito CJ, Grigoletto MES, Nóbrega OT, Córdova C. Dimensionamento de amostras e o mito dos números mágicos: ponto de vista. *Rev Andal Med Deporte.* 2016;9(1):29-31. <http://doi.org/10.1016/j.ramd.2015.02.007>.
7. American College of Sports Medicine. Manual de pesquisa das diretrizes do ACSM para os testes de esforço e sua prescrição. 9^a ed. Rio de Janeiro: Guanabara Koogan; 2014.
8. Matsudo S, Araújo T, Matsudo V, Andrade D, Andrade E, Oliveira LC, et al. Questionário internacional de atividade física (IPAQ): estudo de validade e reprodutibilidade no Brasil. *Rev Bras Ativ Fis Saúde.* 2001;6(2):5-18.
9. Marins JCB, Giannichi RS. Avaliação e prescrição de atividade física: guia prático. 3^a ed. São Paulo: Sahpe; 2003.
10. Pollock ML, Wilmore JH. Exercícios na saúde e na doença: avaliação e prescrição para prevenção e reabilitação. 2^a ed. Rio de Janeiro: Medsi; 1993.
11. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis – part I: review of principles and methods. *Clin Nutr.* 2004;23(5):1226-43. <http://doi.org/10.1016/j.clnu.2004.06.004>. PMid:15380917.
12. Doyon CY, Colley RC, Clarke J, Janssen I, Timmons BW, Tomkinson GR, et al. Trends in Physical fitness among Canadian adults, 2007 to 2017. *Health Rep.* 2021;32(11):3-15. PMid:34787982.

13. Bredella MA. Sex differences in body composition. *Adv Exp Med Biol.* 2017;1043:9-27. http://doi.org/10.1007/978-3-319-70178-3_2. PMid:29224088.
14. World Health Organization. Global status report on tobacco epidemic, 2008: the MPOWER package. Geneva: WHO; 2008.
15. Gadde KM, Martin CK, Berthoud HR, Heymsfield SB. Obesity: pathophysiology and management. *J Am Coll Cardiol.* 2018;71(1):69-84. <http://doi.org/10.1016/j.jacc.2017.11.011>. PMid:29301630.
16. Kochman M, Kasperek W, Guzik A, Družbicki M. Body composition and physical fitness: does this relationship change in 4 years in young adults? *Int J Environ Res Public Health.* 2022;19(3):1579. <http://doi.org/10.3390/ijerph19031579>. PMid:35162603.
17. Cusatis R, Garbarski D. Different domains of physical activity: the role of leisure, housework/care work, and paid work in socioeconomic differences in reported physical activity. *SSM Popul Health.* 2019;7:100387. <http://doi.org/10.1016/j.ssmph.2019.100387>. PMid:31193302.
18. Fortes MSR, Marson RA, Martinez EC. Comparação de desempenho físico entre homens e mulheres: revisão de literatura. *Rev Min Educ Fis.* 2015;23(2):54-69.
19. Ramalho JRO, Lopes ACS, Toledo MTT, Peixoto SV. Nível de atividade física e fatores associados ao sedentarismo em usuários de uma unidade básica de saúde em Belo Horizonte, Minas Gerais. *Rev Min Enferm.* 2014;18(2):426-32. <http://doi.org/10.5935/1415-2762.20140032>.
20. Siqueira FV, Facchini LA, Piccini RX, Tomasi E, Thumé E, Silveira DS, et al. Atividade física em adultos e idosos residentes em áreas de abrangência de unidades básicas de saúde de municípios das regiões Sul e Nordeste do Brasil. *Cad Saude Publica.* 2008;24(1):39-54. <http://doi.org/10.1590/S0102-311X2008000100005>. PMid:18209833.
21. Saha SP, Bhalla DK, Whayne TF Jr, Gairola CG. Cigarette smoke and adverse health effects: an overview of research trends and future needs. *Int J Angiol.* 2007;16(3):77-83. <http://doi.org/10.1055/s-0031-1278254>. PMid:22477297.
22. Goodchild M, Nargis N, Tursan d'Espagnet E. Global economic cost of smoking-attributable diseases. *Tob Control.* 2018;27(1):58-64. <http://doi.org/10.1136/tobaccocontrol-2016-053305>. PMid:28138063.
23. Santos JDP, Duncan BB, Sirena SA, Vigo A, Abreu MNS. Indicadores de efetividade do Programa de Tratamento do Tabagismo no Sistema Único de Saúde em Minas Gerais, Brasil, 2008. *Epidemiol Serv Saude.* 2013;21(4):579-88. <http://doi.org/10.5123/S1679-49742012000400007>.
24. Marques A, Peralta M, Sarmento H, Martins J, González Valeiro M. Associations between vigorous physical activity and chronic diseases in older adults: a study in 13 European countries. *Eur J Public Health.* 2018;28(5):950-5. <http://doi.org/10.1093/eurpub/cky086>. PMid:29767706.
25. Fletcher GF, Landolfo C, Niebauer J, Ozemek C, Arena R, Lavie CJ. Promoting physical activity and exercise: JACC health promotion series. *J Am Coll Cardiol.* 2018;72(14):1622-39. <http://doi.org/10.1016/j.jacc.2018.08.2141>. PMid:30261965.
26. Trapé AA, Lizzi EAS, Jacomini AM, Bueno CR Jr, Franco LJ, Zago AS. Exercício físico supervisionado, aptidão física e fatores de risco para doenças cardiovasculares em adultos e idosos. *Rev Bras Cienc Saude.* 2018;22(4):291-8. <http://doi.org/10.22478/ufpb.2317-6032.2018v22n4.34964>.
27. Moraes SQ, Santos ACB, Fermino RC, Rech CR. Aconselhamento para atividade física realizado por profissionais da Atenção Primária à Saúde. *Cien Saude Colet.* 2022;27(9):3603-14. PMid:36000647.
28. Papini CB, Campos L, Nakamura PM, Brito BTG, Kokubun E. Cost-analysis and cost-effectiveness of physical activity interventions in Brazilian primary health care: a randomised feasibility study. *Cien Saude Colet.* 2021;26(11):5711-26. <http://doi.org/10.1590/1413-812320212611.27142020>. PMid:34852103.