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RESUMO 
 

Na Grécia Antiga, a música e a matemática eram consideradas pilares do conhecimento. Foi no século VI a.C que surgiu 
o primeiro registro da relação existente entre estes pilares, no chamado quadrivium. Com o passar dos tempos, esta 
relação foi se estreitando, e hoje ela pode ser estabelecida e estudada no âmbito escolar. Conhecer a relação entre 
música e matemática pode ser um fator positivo para o professor que ensina funções trigonométricas. Nesse sentido, o 
presente trabalho tem como objetivo investigar o esboço de curva da função trigonométrica seno, de modo a estabelecer 
relações com sons musicais, partindo de um modelo matemático simplificado aplicado no GeoGebra. Para tal, utiliza-se 
a Teoria de Interpretação Global Figural, proposta pela Teoria dos Registros de Representação Semiótica (TRRS). Como 
resultado, é possível reconhecer e compreender a interferência dos parâmetros da função seno na produção do som, 
assim como o sentido desses parâmetros na onda sonora, em particular no caso da nota musical MI. 
 
Palavras-chave: Funções Trigonométricas, Música, Interpretação Global Figural 

 
 

ABSTRACT 

In Ancient Greece, music and mathematics were considered pillars of knowledge. It was in the 6th century BC that the first 
record of the relationship between these pillars appeared, in the so-called quadrivium. Over time, this relationship became 
closer, and today it can be established and studied at school. Knowing the relationship between music and mathematics 
can be a positive factor for teachers who teach trigonometric functions. In this sense, the present work aims to investigate 
the curve outline of the sine trigonometric function, in order to establish relationships with musical sounds, starting from a 
simplified mathematical model applied in GeoGebra. To this end, the Global Figural Interpretation Theory, proposed by 
the Theory of Semiotic Representation Registers (TRRS), is used. As a result, it is possible to recognize and understand 
the interference of the sine function parameters in sound production, as well as the direction of these parameters in the 
sound wave, particularly in the case of the musical note MI. 
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1 INTRODUÇÃO  
  

O primeiro registro associando matemática e música é uma lenda que surgiu por 

volta do século VI a.C. na Grécia Antiga e na Escola Pitagórica (Boyer & Merzbach, 2019). 

Essa lenda conta que ao passar por um ferreiro, Pitágoras ouviu sons de um martelo que 

às vezes soavam agradáveis em consonância e ora em dissonância e, isso o instigou a 

descobrir tal fenômeno (D’Arrezzo, 1996 apud Pereira, 2013). Durante experimentos deste 

fenômeno, notou que o som produzido havia relação com a massa e o tamanho do martelo 

e inventou um instrumento sonoro composto por apenas uma corda, depois chamado 

Monocórdio de Pitágoras (Figura 1). 

 

                             Figura 1 
                             O monocórdio 

 

 
Fonte: Adaptado de clube da OBMEP (2016). 

 

O monocórdio era um instrumento que continha uma corda única tensionada entre 

dois cavaletes fixos juntamente com um terceiro cavalete móvel que foi construído para 

dividir a corda em partes proporcionais (Figura 1). Movendo o cavalete móvel ao longo da 

prancha, a sua nova posição resultava em diferentes sons, mais agudos ou mais graves. 

Durante suas experiências, Pitágoras marcou com pontos a distância entre os locais ao 

longo da corda, de onde os sons soavam mais harmônicos ou desarmônicos para seus 

ouvidos. Dessa forma, ele desenvolveu sua própria escala musical, que é chamada a 

Escala Pitagórica, um primeiro sistema de sintonização musical existente. 

Essa conexão da música com a matemática perpassou o tempo e hoje ela também 

pode ser utilizada em sala de aula. Neste sentido, o presente estudo tem por finalidade 

estabelecer relações com a função trigonométrica seno e os sons musicais analisando uma 

Cavalete móvel  Cavalete fixo  Cavalete fixo  Corda  
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única nota musical, a nota1 MI.  Sendo assim, é uma investigação qualitativa sobre o esboço 

de curvas e tem-se a seguinte pergunta de pesquisa: Como relacionar e construir 

significados para os parâmetros de representação algébrica da função seno a partir de uma 

nota musical? Para responder essa questão são apresentados conceitos musicais 

importantes para a compreensão do tema, a definição da função seno e ao final a 

experimentação através da Teoria Global Figural e do aplicativo Geogebra2. 

 

2 O SOM 
 

O som pode ser definido como a sensação do ouvido quando há diferença de 

vibração do ar. Se o ar serve como meio de propagação, então as ondas de som são 

flutuações na pressão de ar que se propagam e, atingindo os ouvidos, são convertidas em 

impulsos nervosos que são decodificados pelo cérebro (Wheeler, 2014). Esse esquema é 

ilustrado na Figura 2 a seguir. 

 

                                       Figura 21 

                       Ouvido humano e a percepção de ondas sonoras 

 
                                        Fonte: Anacleto (2015). 
 

 

 
1 O termo nota neste trabalho refere-se sempre às notas musicais. 
2 O GeoGebra é um software gratuito de matemática que engloba áreas de geometria, álgebra, gráficos e 
planilhas de forma dinâmica. Pode ser acessado de forma online e permite compartilhar os recursos 
produzidos, também é disponível em diversos idiomas. 
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O som é produzido por vibrações da pressão atmosférica que podem ser regulares 

e irregulares. As vibrações irregulares produzem ondas irregulares, ou ruídos, e são 

percebidas como desagradáveis e de sons menos organizados (Med, 1996). As vibrações 

regulares produzem ondas regulares, despertando sons agradáveis e harmoniosos. Essas 

se manifestam por meio de três características que fazem um som se distinguir: altura, 

gravidade e timbre. 

Altura: O termo musical altura é usado para descrever se um som é alto ou baixo e 

é correlacionado à frequência. Quando um som é considerado alto musicalmente possui 

maior frequência e baixo quando possui menor frequência. Quando alguém fala para 

abaixar o som ou aumentar o som musicalmente, não está se referendo ao volume do som 

na forma habitual.  

Pode-se perceber essas variações através das ondas sonoras da Figura 3. A onda 

sonora na Subfigura 3.1 caracteriza um som mais grave (baixa frequência) em relação ao 

som caracterizado pela onda da Subfigura 3.2, pois ela possui menor número de oscilações 

completas. 

 

Figura 3  

Onda sonora grave e aguda 

       3.1 – Onda de baixa frequência            
 

 

 

 

3.2 - Onda de alta frequência 
 

 

Fonte: Autoras. 
 

 
Intensidade: A partir da intensidade pode-se distinguir sons mais intensos e menos 

intensos, sendo esses sons mais fortes e mais fracos, respectivamente. Ondas sonoras 

transportam energia, e desse modo, grandes amplitudes de onda produzem sons mais 

fortes, enquanto que amplitudes menores, com menos energia, produzem sons mais fracos.  

A intensidade do som é medida em Decibel (dB) e até 80 dB o som é suportável para o ser 

humano, ou seja, não causa risco para os ouvidos. 

Além da escala para a intensidade do som em dB também existe a escala em Hertz 

(Hz) que mensura a altura das notas musicais e indica se o som é grave ou agudo. Assim, 
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as frequências sonoras perceptíveis pelo ser humano variam de 20 Hz a 20000 Hz. Esse 

intervalo é denominado intervalo audível.  
Timbre: O timbre é a característica que permite diferenciar sons que possuem a 

mesma frequência e amplitude. Deste modo, ondas sonoras produzidas por diferentes 

instrumentos musicais ou pela voz humana, podem possuir a mesma frequência e mesma 

amplitude, porém sua sonoridade é diferente, por conta de que o timbre é único para cada 

instrumento ou tom de voz. 

 

3 A MÚSICA 
 

Branco (2022) explica que a música (do grego μουσική τέχνη - musiké téchne, a arte 

das musas) é uma forma de arte que se constitui em combinar sons e silêncio seguindo 

uma pré-organização ao longo do tempo. A música é composta por notas musicais que são 

os menores elementos do som. A escala diatônica contém sete notas: DÓ - RÉ - MI - FÁ - 

SOL - LÁ – SI, em que a primeira nota é repetida na oitava, dando início a uma nova escala. 

Na figura a seguir é apresentado o teclado de um piano e suas notas musicais 

representadas por letras do nosso alfabeto: C – D – E – F – G – A – B. 

 

                                 Figura 4 

                                 Teclado musical 

 
                                 Fonte: Wright (2009). 

 

Conforme a Figura 4, há a repetição das notas representadas por letras, mas cada 

nota possui a sua sonoridade singular. As teclas mais à direita possuem maior altura 

enquanto que as teclas mais à esquerda possuem menor altura. Dessa forma, quando uma 

mesma nota está uma oitava acima significa dizer que está posicionada mais à direita no 

teclado. Ao comparar duas notas musicais, uma pode soar mais grave e a outra mais aguda. 

O que determina esse comportamento é a frequência das vibrações que é resultado das 

diferentes alturas musicais (Figura 5).  
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                         Figura 5 

                         Frequência das notas musicais 

 
                         Fonte: Prescinato (2011). 

 

A Figura 5 mostra a frequência de cada uma das notas musicais. Quanto maior a 

vibração mais agudo será o som, e quanto menor a vibração mais grave será o som. Na 

seção seguinte será contextualizada a abordagem metodológica utilizada na investigação 

da função seno com base em sons musicais. 

 

4 A ABORDAGEM DE INTERPRETAÇÃO GLOBAL FIGURAL 
 

Neste estudo adota-se uma abordagem qualitativa, em que será analisado o esboço 

de curva de uma nota musical com o foco na compreensão das relações entre o 

comportamento gráfico da função seno com base nos sons musicais gerados no software 

GeoGebra. A Teoria dos Registros de Representação Semiótica se insere nesta abordagem 

pois o autor Raymond Duval discorre sobre a Interpretação Global Figural, a qual trata sobre 

o esboço de curvas de funções de forma mais ampla e qualitativa em relação à Abordagem 

Ponto a Ponto. 

Na Abordagem Ponto a Ponto, considera-se a expressão algébrica da função, ou 

seja, sua lei de formação. Nela, o esboço da curva da função é um conjunto de pares 

ordenados, resultante da atribuição de valores para a variável independente, e onde por 

meio de cálculos são encontrados os valores para a variável dependente. Essa abordagem 

gera apenas uma correspondência local entre o par ordenado e o ponto no gráfico, como 

se fosse uma regra de codificação:  
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A regra de codificação só permite, portanto, duas coisas: ou a leitura de uma dupla de 
números sobre o gráfico a partir de um ponto designado, ou a designação de um ponto 
a partir de uma dupla de números. A repetição destas duas operações elementares 
não é suficiente para a conversão de representações entre os dois registros. (Duval, 
1993, p. 45) 
  

Com essa abordagem pontual, pode-se não conseguir estabelecer relações entre as 

representações da função nos registros algébrico e gráfico. Sendo assim, Duval (2012) 

propõe a Abordagem de Interpretação Global Figural que leva em consideração as 

unidades significativas da lei de formação, ou seja, os parâmetros (coeficientes) presentes 

na representação algébrica de uma equação com as unidades significativas visuais próprias 

da representação gráfica (inclinação, concavidade, intersecção com os eixos).   

Essa abordagem trata de estudar qualitativamente a expressão ou lei de formação 

de uma função na denominada equação de curva base, para assim fazer modificações 

algébricas (tratamentos) e analisar graficamente o que implicam essas modificações 

(conversões) articulando as operações entre os dois registros.  Dessa forma, na seção 5 a 

função seno é definida para a posterior utilização de um modelo matemático na seção 6, o 

qual se apoia na frequência da nota musical MI para a análise. 

 

 

5 A FUNÇÃO SENO VIA INTERPRETAÇÃO GLOBAL FIGURAL 
 
A função seno pode ser definida como a função 𝑓 de ℝ em ℝ que a cada 𝑥 faz 

corresponder o número 𝑦 = 𝑠𝑒𝑛 𝑥. O gráfico da função seno é chamado senoide e o seu 

esboço está na Figura 6:  

 

                          Figura 62  

                          Curva senoide 

 
                         Fonte: Autoras. 
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Seno é uma função periódica, de período 2 𝜋, uma vez que  𝑠𝑒𝑛(𝑥) = 𝑠𝑒𝑛 (𝑥 + 2𝜋). 

Já a função cosseno surgiu da necessidade de determinar o seno do complemento de um 

ângulo. Ela pode ser definida como a função real 𝑓  em que, para cada 𝑥 faz corresponder 

o número 𝑦 = 𝑐𝑜𝑠 𝑥. O gráfico da função cosseno é chamado cossenoide (Figura 7). 

 

                        Figura 7      

                       Curva cossenoide 

 
   Fonte: Autoras. 

 
O gráfico do cosseno é uma curva periódica, pois  𝑐𝑜𝑠(𝑥) = 𝑐𝑜𝑠 (𝑥 + 2𝜋) e seu 

período é 2𝜋. A cossenoide é a própria senoide, porém transladada no eixo 

horizontal, como se observa na figura a seguir: 

 

           Figura 8 

Curva cossenoide (em vermelho)  

 
          Fonte: Autoras. 

 

 

Na Figura 8 a onda cossenoide é também uma senoide, pois possui o mesmo 

formato, porém transladada no eixo horizontal com relação à onda seno. Neste trabalho, é 

possível utilizar qualquer uma dessas funções. Contudo, opta-se pela função seno e mais 

especificamente, para a seguinte lei de formação no registro algébrico: 

                                                                      (1)               

 
sendo os parâmetros 𝐴, 𝐵, 𝐶 e 𝐴0 números reais.  
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Usando a Abordagem de Interpretação Global Figural e partindo da representação 

algébrica (1), para o esboço da senoide são modificados os valores dos parâmetros 𝐴, 𝐵, 𝐶 e 

𝐴0  e são observadas as modificações da curva no registro gráfico.  

Para iniciar o esboço da curva, considera-se a função base  𝑦 = 𝐴𝑠𝑒𝑛 𝑥, em que 𝐵 =

1, 𝐶 = 𝐴0 = 0, e o valor do parâmetro 𝐴 é variável. Tomando alguns valores para 𝐴, tem-

se: 

a) Para 𝐴 = 1 ⟹ 𝑦1 = 𝑠𝑒𝑛 𝑥.                   

b) Para 𝐴 = 2 ⟹ 𝑦2 = 2𝑠𝑒𝑛 𝑥.  

 

A Figura 9 mostra a senoide em relação a variação do parâmetro 𝐴. 

 

                                       Figura 9  

                                       Curva 𝒚 = 𝑨𝒔𝒆𝒏 𝒙 

 
Fonte: Autoras. 
 

Da Figura 9 observa-se que o parâmetro 𝐴 está relacionado com o ponto mais alto 

(crista) ou o ponto mais baixo (vale) da curva, ou seja, com a amplitude da onda.  

Agora, considera-se a função 𝑦 = 𝑠𝑒𝑛 (𝐵𝑥), em que 𝐴 = 1, 𝐶 = 𝐷 = 0 e o valor de 𝐵 

é variável. Tomando alguns valores para 𝐵, tem-se: 

a) Para 𝐵 = 1 ⟹ 𝑦1 = 𝑠𝑒𝑛 𝑥.             

b) Para 𝐵 = 2 ⟹ 𝑦2 = 𝑠𝑒𝑛2𝑥.  

Na Figura 10, o parâmetro 𝐵 está relacionado com o comprimento de onda 𝜆 e 

frequência 𝑓 . Enquanto 𝑦1 tem comprimento  𝜆1 = 2𝜋, a curva 𝑦2 tem comprimento 𝜆2 =

𝜋.Também, a curva 𝑦1 tem frequência 𝑓1 = 1 𝐻𝑧, enquanto que 𝑦2 tem frequência 𝑓2 = 2 𝐻𝑧, 

já que a senóide completa duas oscilações no intervalo de [0, 2𝜋].  

https://doi.org/10.5007/1981-1322.2025.e107371
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                                     Figura 10     

     Curva 𝒇(𝒙) = 𝒔𝒆𝒏 (𝑩𝒙) 

 

                          Fonte: Autoras. 
 

Mantendo os parâmetros 𝐴 = 1, 𝐵 = 1, 𝐷 = 0 e variando o parâmetro C, resulta na 

função 𝑦 = 𝑠𝑒𝑛 (𝑥 + 𝐶). Tomando alguns valores para 𝐶, tem-se: 

a) Para 𝐶 = 0 ⟹ 𝑦 = 𝑠𝑒𝑛 𝑥   

b) Para 𝐶 = 𝜋
2

⟹ 𝑦1 = 𝑠𝑒𝑛(𝑥 + 𝜋
2

).  

c) Para 𝐶 = −1 ⟹ 𝑦2 = 𝑠𝑒𝑛 (𝑥 − 1).   
 

                 Figura 11  

                 Curva 𝒇(𝒙) = 𝒔𝒆𝒏 (𝒙 + 𝑪) 

 
                  Fonte: Autoras. 

 

Ao modificar o parâmetro C na expressão algébrica da Figura 11, as curvas sofrem 

um deslocamento sobre o eixo 𝑥, em comparação com a curva 𝑦 = 𝑠𝑒𝑛 𝑥. Assim, se 𝐶 > 0, 

então a senóide se desloca 𝐶 unidades para a esquerda e se 𝐶 < 0 o deslocamento ocorre 

para a direita.  

O último parâmetro a ser analisado é o 𝐴0. Mantendo constantes 𝐴 = 1, 𝐵 = 1, 𝐶 = 0 

e variando o valor de 𝐴0 na função 𝑦 = 𝑠𝑒𝑛 (𝑥) + 𝐴0. Tomando alguns valores para 𝐴0, tem-

se: 
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a) Para 𝐴0 = 0 ⟹ 𝑦 = 𝑠𝑒𝑛 𝑥 

b) Para 𝐴0 = 1 ⟹ 𝑦1 = 𝑠𝑒𝑛(𝑥) + 1.  

c) Para 𝐴0 = −1 ⟹ 𝑦2 = 𝑠𝑒𝑛 (𝑥) − 1.       

 

Na Figura 12 pode-se observar a variação da curva em relação à variação do 

parâmetro 𝐴0. 

 Figura 12 

                                 Curva 𝒇(𝒙) = 𝒔𝒆𝒏 (𝒙) + 𝑨𝟎 

 
                               Fonte: Autoras. 

 

De acordo com a Figura 12, o parâmetro 𝐴0 está relacionado com o deslocamento 

vertical da senoide em relação à curva 𝑦 = 𝑠𝑒𝑛 𝑥.  Se 𝐴0 > 0, então a senóide se desloca 

𝐷 unidades para cima, em relação ao eixo 𝑦, e se 𝐴0 < 0 a curva sofre um deslocamento 

para baixo. 

 

6 O MODELO MATEMÁTICO DA FUNÇÃO SENO E SUA RELAÇÃO COM 
SONS MUSICAIS 
 

6.1 O Modelo matemático simplificado 
A partir do esboço de curvas anteriormente realizado da função 𝑦 = 𝐴. 𝑠𝑒𝑛(𝐵𝑥 + 𝐶) +

𝐴0  é preciso chegar em um modelo matemático simplificado para as ondas musicais 

senoidais, já que as ondas sonoras variam conforme o tempo 𝑡. Os ajustes na função são: 

•  O parâmetro 𝐴 indica a Amplitude da onda sonora. Os sons possuem um número 

racional que multiplica a função da onda sonora, quanto maior esse número o som 

é mais intenso e quanto menor é menos intenso. Um exemplo pode ser uma pessoa 
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que grita e depois sussurra, ambos na mesma frequência, mas no primeiro caso o 

som apresenta maior amplitude do que no segundo caso. 

● O parâmetro 𝐵 se relaciona com a frequência 𝑓, com o comprimento e com o 

período 𝑇, ou seja, com o tempo que a onda demora para realizar uma oscilação completa. 

De fato, para mostrar esta última relação, fixe o tempo em 1 segundo e considere as 

funções  𝑦1 = 𝑠𝑒𝑛 𝑥 e 𝑦2 = 𝑠𝑒𝑛 2𝑥, sendo os parâmetros 𝐴 = 1 e 𝐵 iguais a 𝐵 = 1 e 𝐵 = 2, 

respectivamente, conforme Figura 13: 

                           Figura 13  

                           Curvas 𝒚𝟏 = 𝒔𝒆𝒏 𝒙 e 𝒚𝟐 = 𝒔𝒆𝒏 𝟐𝒙 

 
                          Fonte: Autoras. 
 

Uma oscilação completa da senoide 𝑦1 = 𝑠𝑒𝑛 𝑥 ocorre em 2𝜋 radianos e ela demora 

um segundo para essa oscilação, então sua frequência é: 

 

𝑓 =
1 𝑜𝑠𝑐𝑖𝑙𝑎çã𝑜
1 𝑠𝑒𝑔𝑢𝑛𝑑𝑜 =  1 𝐻𝑧 

e escreve-se: 

1 𝑠 _______2𝜋 𝑟𝑎𝑑 

𝑡 𝑠 _______𝑥  𝑟𝑎𝑑 

𝑥 = 𝑥(𝑡) = 1.2𝜋𝑡 

 

Como o tempo para completar uma oscilação completa de 𝑦1 é de 1 segundo, então 

o período é 𝑇 = 1𝑠.  Já a curva 𝑦2 = 𝑠𝑒𝑛 2𝑥 completa duas oscilações em um segundo, 

então sua frequência será 

𝑓 =
2 𝑜𝑠𝑐𝑖𝑙𝑎çã𝑜
1 𝑠𝑒𝑔𝑢𝑛𝑑𝑜 =  2 𝐻𝑧 

da mesma forma,  

    1 𝑠 _______2. 2𝜋 𝑟𝑎𝑑 
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𝑡 𝑠 _______𝑥  𝑟𝑎𝑑 

𝑥 = 𝑥(𝑡) = 2.2𝜋𝑡 

 

O tempo para completar duas oscilações é de 1 segundo e, portanto, o período é 

𝑇 = 1
2

𝑠. Seguindo o raciocínio, chega-se à função 𝑥(𝑡) = 𝑓. 2𝜋𝑡 sendo que o parâmetro 𝐵 

se relaciona com a frequência 𝑓 da senóide.  

● O parâmetro C está relacionado com o deslocamento horizontal da curva. Assim, 

se esta onda se propagar para a direita, após um determinado tempo 𝑡, terá percorrido uma 

distância 𝜃 (em radianos por segundo, pois o argumento da função está em radianos) 

conforme Figura 14. 

                                     Figura 14  

 Propagação da curva 𝒚 = 𝒔𝒆𝒏(𝒙 − 𝜽) 

 
                           Fonte: Autoras. 
 

O deslocamento da senoide para a direita (𝜃 > 0) indica que o som sofreu um atraso 

no tempo, ou seja, houve um delay. Já o deslocamento para esquerda (𝜃 < 0) significa um 

avanço do som no tempo. 

● O parâmetro 𝐴0 indica o deslocamento vertical da onda (Figura 15). 
 

                        Figura 15  
                             Curva 𝑦 = 𝑠𝑒𝑛 (𝑥) + 𝐴0 

 
                                                       Fonte: Autoras 
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O deslocamento vertical está relacionado com a pressão atmosférica normal3. 

Quando 𝐴0 = 0, a pressão do ar é considerada normal, mas quando 𝐴0 > 0 ou 𝐴0 < 0, a 

pressão é maior ou menor que a pressão normal, respectivamente.  

Diante da análise qualitativa dos parâmetros 𝐴, 𝐵, 𝐶, 𝐴0, chega-se ao modelo matemático 

simplificado a seguir, em que 𝑦(𝑡) descreve a variação da pressão atmosférica, 𝐴 é a 

Amplitude e mede variação máxima da pressão atmosférica, 𝑓 é a frequência da onda, 𝜃 é 

o ângulo da fase e indica o avanço ou atraso do início do som, e 𝐴0 é a pressão atmosférica 

normal. 

                                                                                        (2) 

Assim, a análise qualitativa na seção 6.2 dos parâmetros físicos 𝐴, 𝐵, 𝐶 e 𝐴0 da 

função 𝑦(𝑡) deve possibilitar a identificação dos sons harmônicos necessários para cada 

composição musical e modificar as ondas sonoras quando necessário. 

 

6.2   A Experimentação  
 

Nesta seção, os sons de algumas notas musicais são percebidos e correlacionados 

com os parâmetros (coeficientes) do modelo matemático (2). Considerando fixo o valor da 

pressão atmosférica normal 𝐴0 = 0, são realizados experimentos para verificar como a 

variação da amplitude (𝐴), da frequência (𝑓) e do ângulo da fase (𝜃) influenciam na 

produção e percepção do som. 

Os experimentos são realizados pelo GeoGebra e para evitar repetições deste termo, 

quando não mencionado, subentende-se o uso deste aplicativo. Opta-se por usar a nota 

musical MI nos experimentos para exemplificar a produção e percepção de seus sons. No 

entanto, podem ser utilizadas outras notas musicais e os comparativos podem ser 

realizados com mais de duas notas. Os experimentos estão divididos em momentos para 

facilitar a compreensão e distinção de cada atividade. 

MOMENTO 1: Para iniciar a experimentação e realizar um comparativo mais 

assertivo, utiliza-se nesta análise a nota musical MI variando a sua frequência.  

Experimento 1 (MI com frequência 𝑓 = 329,63 𝐻𝑧): Considere a função 𝑦(𝑡) =

𝐴𝑠𝑒𝑛(2𝜋𝑓𝑡 − 𝜃) + 𝐴0 sendo, 𝐴 = 1, 𝐴0 = 0, 𝜃 = 0 e 𝑓 = 329,63, ou seja, a nota musical MI 

está com sua frequência normal, que é de 329,63 Hz. 

 
3De acordo com Filho (2022). 
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Para reproduzir a sua sonoridade no GeoGebra, basta seguir os passos: 

● Na Janela de Entrada, digite TocarSom e escolha a opção TocarSom(<Função>, 

<Valor Mínimo>, <Valor Máximo>)  

● Em seguida, entre com os dados da função seno e com os valores mínimo e 

máximo que se referem à duração de tempo do som:  

Função: 𝑦 = 𝑠𝑒𝑛(329.63 ∗ 𝜋 ∗ 𝑥) 

Valor Mínimo 0, Valor Máximo 1 

● Logo, o comando final é TocarSom(sin(329.63*pi*x),0,1). 

 

Para esboçar a curva da função 𝑦 = 𝑠𝑒𝑛(2 ∗ 329,63 ∗ 𝜋 ∗ 𝑥) basta seguir os passos: 

● Na Janela de Entrada, escolha o comando Função(<Função>, <Valor de x Inicial>, 

<Valor de x Final>) 

● Em seguida, entre com os dados da função seno, do Valor de x Inicial e do Valor 

de x Final:  

Função: 𝑦 = 𝑠𝑒𝑛(329.63 ∗ 𝜋 ∗ 𝑥) 

Valor de x Inicial: 0, Valor de x Final: 0.03 

Para visualizar a curva, clique com o botão direito do mouse e escolha a opção 

Eixo X: Eixo Y: 1:100 

● Logo, o comando final é Função(sin(329.63*pi*x), 0, 0.03) e o gráfico é mostrado 

na Figura 16. 

            Figura 16 

           Curva da nota MI de 329,63 Hz 

             
                           Fonte: Autoras. 
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Como a nota MI possui 329,63 Hz de oscilações em 1 segundo o intervalo escolhido 

é entre 0 e 0,03. A malha do eixo x foi determinada para 1 e a do eixo y para 100. Essas 

configurações permitiram observar melhor a função seno, contudo, outras configurações 

poderiam ser realizadas. 

 

Experimento 2 (MI com frequência 𝑓 = 659,26 𝐻𝑧): Considere a nota musical MI 

com frequência de 329,63 Hz. Seguindo os mesmos comandos usados para a reprodução 

do som e da curva da nota MI com frequência 329,63 Hz, a única alteração será o valor da 

frequência que passa a ser 𝑓 = 659,26 𝐻𝑧 quando multiplicada por 2. Logo: 

● Para tocar o som, insira o comando TocarSom(sin(2*329.63*pi*x),0,1) 

Quando a frequência da nota MI é modificada para 659,26 Hz, o som produzido é 

mais agudo comparado com som produzido da nota MI, 𝑓 = 329,63 𝐻𝑧 

● Para esboçar a curva (Figura 17), insira o comando Função(sin(2*329.63*pi*x), 0, 

0.03). 

 

       Figura 17  

        Nota MI com frequências diferentes 

 
                 Fonte: Autoras. 
 

Na Figura 17, ao comparar a curva da nota MI, cuja frequência era 𝑓 = 329,63 𝐻𝑧 

(traço verde pontilhado) com a curva da nota MI,  𝑓 = 659,26 𝐻𝑧 (traço vermelho contínuo) 
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é possível notar a modificação na quantidade de oscilações, sendo que a nota MI com maior 

frequência possui mais ciclos no intervalo [0, 0,03] segundos. Ao comparar os sons, a curva 

com a maior frequência (traço vermelho contínuo) é a que possui um som mais agudo, 

apesar de ser a mesma nota musical. 

 
MOMENTO 2: utiliza-se a nota musical MI com frequência normal 329,63 𝐻𝑧, porém 

variando a sua amplitude.  

Experimento 3 (MI com amplitude 𝐴 = 3): Considere a nota MI com frequência 

329,73 𝐻𝑧, 𝐴0 = 0, 𝜃 = 0 e 𝐴 = 3. Seu som é produzido via comando 

TocarSom(3*sin(329.63*pi*x),0,1).  O gráfico dessa nota com alteração na amplitude pode 

ser esboçado a partir do comando Função(3*sin(329.63*pi*x), 0, 0.03), como mostra a 

Figura 18. 

         Figura 18  

Variação da amplitude na nota MI 

 
                                       Fonte: Autoras. 

 

Pela Figura 18, as frequências continuam as mesmas da nota MI, o único parâmetro 

que muda é a amplitude. Quando a amplitude é 𝐴 = 3, é possível ouvir no GeoGebra o som 

da nota MI com uma intensidade maior em comparação com o som produzido no 
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Experimento 1, quando 𝐴 = 1. Então, o som emitido é a nota MI com a amplitude três 

vezes maior que a primeira, sendo a mesma frequência, porém com uma intensidade maior. 

 

MOMENTO 3: Ainda usando a nota musical MI com frequência normal 329,63 𝐻𝑧, 

altera-se o valor do ângulo da fase 𝜃, isto é, considera-se a função 𝑦(𝑡) = 𝐴𝑠𝑒𝑛(2𝜋𝑓𝑡 − 𝜃) +

𝐴0 sendo, 𝐴 = 1, 𝐴0 = 0, 𝜃 = 2 e 𝑓 = 329,63. 

Experimento 4 (MI com ângulo de fase 𝜃 = 2): Na alteração do parâmetro 𝜃, o 

esperado é que ocorra o fenômeno delay4, que é um atraso do som. No entanto, ao utilizar 

o comando TocarSom com qualquer frequência de nota musical e variando 𝜃, o som não é 

reproduzido com atrasos. Portanto, não é possível ouvir o efeito causado pela variação 

desse parâmetro no Geogebra. 

Sendo assim, somente é possível visualizar o gráfico da onda sonora deslocada no 

eixo horizontal. Em um deslocamento de 𝜃 = 𝜋
500

, a curva é gerada via comando 

Função(sin(329,63*pi*x-pi/500), pi/500, 0.03+pi/500), conforme Figura 19.   

                  Figura 19 

                  O parâmetro 𝜽 

 
                 Fonte: Autoras. 
 

Observando a Figura 19, há um atraso ou deslocamento à direita da curva da função 

𝑦 = 𝑠𝑒𝑛(329,63 ∗ 𝑥 − 𝜋
500

) (cor rosa escuro), em relação à curva 𝑦 = 𝑠𝑒𝑛(329,63 ∗ 𝑥) (cor 

verde) em que 𝜃 = 0, sendo que a interseção das curvas aparece com uma cor resultante 

 
4 delay é o nome dado para o atraso de áudio que ocorre em virtude do processamento do som. Um músico 
ao gravar uma faixa de áudio pode escutar a música reproduzida em um fone de ouvido em uma velocidade 
atrasada com a que está tocando, isso é uma falha comum que acontece nos computadores devido a latência 
(tempo do processamento da informação pelo computador). 
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da sobreposição do verde com o rosa escuro. O deslocamento à direita corresponde 

exatamente ao valor do parâmetro 𝜃 escolhido. 

 

7. Considerações finais  
 

Quanto aos parâmetros, a variação da amplitude e da frequência foram bem 

significativas e possibilitou observar, ouvir e distinguir as sonoridades correspondentes a 

cada uma delas. Porém, quanto ao ângulo de fase, o GeoGebra não foi capaz produzir o 

delay que é o atraso do som. Outra questão refere-se ao parâmetro 𝐴0. Não foram 

encontrados em livros didáticos estudos que o relacionavam com a pressão atmosférica, 

sendo encontrado apenas no estudo de Filho (2022) e com base nele, assumiu-se que 𝐴0 =

0 correspondia à pressão atmosférica normal. Assumido a pressão atmosférica normal, 

esse parâmetro não foi explorado.  

Para um olhar mais amplo e qualitativo das curvas, uma opção é a abordagem de 

Interpretação Global Figural, pois pode-se atribuir sentidos aos parâmetros (coeficientes) 

da função seno através de significados musicais perceptíveis por meio de experimentos 

visuais e sonoros no GeoGebra.  Essa abordagem no esboço de curvas apresenta um 

grande potencial para o ensino, e a música surge como uma possibilidade relevante para o 

ensino e a aprendizagem da função seno, enriquecendo as aulas de Matemática. 
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