Efeito de dietas hiperproteicas nas adaptações musculares induzidas pelo treinamento resistido: revisão de literatura

Autores

DOI:

https://doi.org/10.5007/1807-0221.2021.e69879

Resumo

O objetivo do estudo foi analisar o efeito de dietas hiperproteicas nas adaptações musculares em indivíduos praticantes de treinamento resistido, assim como relatar possíveis alterações em dosagens bioquímicas de hormônios anabólicos. Foi realizada uma revisão da literatura nas bases de dados online PubMed, Scopus e Web of Science. Os estudos encontrados analisaram o efeito da ingestão de proteínas em quantidades a partir de 0,8 g/kg/dia até 4,4 g/kg/dia em períodos de duas a dezesseis semanas. Corroborando com a International Society of Sports Nutrition, Academy of Nutrition and Dietetics, Dietitians of Canada, American College of Sports Medicine e Nutrition guidelines for strentgh sports: Sprinting, weightlifting, throwing events, and bodybuilding, a presente revisão aponta que a ingestão de proteínas visando a hipertrofia muscular em praticantes de treinamento resistido, deve ser de aproximadamente 2 g/kg/dia. Quantidades acima deste valor não resultam em maior aumento de massa muscular em praticantes de treinamento resistido.

Biografia do Autor

João Pedro Faraco, Universidade Federal de Santa Catarina

Graduado em Nutrição pela Universidade Federal de Santa Catarina (UFSC).

Bruna Cunha Mendes, Universidade Federal de Santa Catarina

Doutoranda (2019) e Mestre (2019) em Nutrição pelo Programa de Pós-Graduação em Nutrição da Universidade Federal de Santa Catarina. Membro do grupo Translational Nutritional Neuroscience vinculado à Universidade Federal de Santa Catarina, Brasil. Pós-graduada (Latu sensu) em Nutrição Clínica e Esportiva (2016) e Graduada em Nutrição pela Universidade Federal de Santa Catarina (2013). 

Débora Kurrle Rieger, Universidade Federal de Santa Catarina

Possui graduação em Nutrição pela Universidade do Vale do Rio dos Sinos (2005). Mestre em Bioquímica pela Universidade Federal do Rio Grande do Sul (UFRGS). Doutora em Bioquímica pela Universidade Federal de Santa Catarina (UFSC). Atualmente é professora Adjunta do Departamento de Nutrição da UFSC. É membro fundador do Grupo de pesquisa em Neurociência Nutricional Translacional do CNPq (Trasnlational Nutritional Neuroscience - TNN) e do grupo de pesquisa em nutrição clinica e aplicada do CNPq. Atua como membro da Teia de articulação pelo fortalecimento da segurança alimentar e nutricional - TEARSAN. Realiza pesquisas nas temática de nutrição na epilepsia, e nos transtornos de depressão e ansiedade associados a doenças metabólicas (obesidade, diabetes).

Referências

AHTIAINEN, J. P. et al. Effects of resistance training on testosterone metabolism in younger and older men. Experimental gerontology, v. 69, p. 148–158, set. 2015.

ANTONIO, J. et al. A high protein diet (3.4 g/kg/d) combined with a heavy resistance training program improves body composition in healthy trained men and women – a follow-up investigation. Journal of the International Society of Sports Nutrition, v. 12, n. 1, p. 39, 20 out. 2015.

ANTONIO, J. et al. A High Protein Diet Has No Harmful Effects: A One-Year Crossover Study in Resistance-Trained Males. Journal of Nutrition and Metabolism, v. 2016, 2016.

ANTONIO, J. et al. The effects of a high protein diet on indices of health and body composition – a crossover trial in resistance-trained men. Journal of the International Society of Sports Nutrition, v. 13, n. 1, p. 3, 16 jan. 2016.

ANTONIO, J. et al. The effects of consuming a high protein diet (4.4 g/kg/d) on body composition in resistance-trained individuals. Journal of the International Society of Sports Nutrition, v. 11, n. 1, p. 19, 12 maio 2014.

BAKER, J. S.; MCCORMICK, M. C.; ROBERGS, R. A. Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise. Journal of nutrition and metabolism, v. 2010, p. 905612, 2010.

BANGSBO, J. et al. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. The Journal of physiology, v. 451, p. 205–227, 1992.

BENDTSEN, L. Q. et al. Effect of Dairy Proteins on Appetite, Energy Expenditure, Body Weight, and Composition: a Review of the Evidence from Controlled Clinical Trials1. Advances in Nutrition, v. 4, n. 4, p. 418–438, 8 jul. 2013.

BRYNER, R. W. et al. Effects of resistance vs. aerobic training combined with an 800 calorie liquid diet on lean body mass and resting metabolic rate. Journal of the American College of Nutrition, v. 18, n. 2, p. 115–121, abr. 1999.

BURD, N. A. et al. Enhanced Amino Acid Sensitivity of Myofibrillar Protein Synthesis Persists for up to 24 h after Resistance Exercise in Young Men. The Journal of Nutrition, v. 141, n. 4, p. 568–573, 1 abr. 2011.

CHANTRANUPONG, L. et al. The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell reports, v. 9, n. 1, p. 1–8, 9 out. 2014.

CHURCHWARD-VENNE, T. A. et al. Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: a double-blind, randomized trial. The American Journal of Clinical Nutrition, v. 99, n. 2, p. 276–286, fev. 2014.

CHURCHWARD-VENNE, T. A. et al. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans. Amino acids, v. 45, n. 2, p. 231–240, ago. 2013.

DREYER, H. C. et al. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. The Journal of physiology, v. 576, n. Pt 2, p. 613–624, 15 out. 2006.

DRUMMOND, M. J. et al. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. Journal of applied physiology (Bethesda, Md. : 1985), v. 106, n. 4, p. 1374–1384, abr. 2009.

HERDA, A. A. et al. Muscle performance, size, and safety responses after eight weeks of resistance training and protein supplementation: a randomized, double-blinded, placebo-controlled clinical trial. Journal of strength and conditioning research, v. 27, n. 11, p. 3091–3100, nov. 2013.

HOFFMAN, J. R. et al. Effect of Protein Intake on Strength, Body Composition and Endocrine Changes in Strength/Power Athletes. JOURNAL OF THE INTERNATIONAL SOCIETY OF SPORTS NUTRITION, v. 3, dez. 2006.

HOLECEK, M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutrition & metabolism, v. 15, p. 33, 2018.

JAGER, R. et al. International Society of Sports Nutrition Position Stand: protein and exercise. Journal of the International Society of Sports Nutrition, v. 14, p. 20, 2017.

KATSANOS, C. S. et al. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. American Journal of Physiology. Endocrinology and Metabolism, v. 291, n. 2, p. E381-387, ago. 2006.

KERKSICK, C. M. et al. ISSN exercise & sports nutrition review update: research & recommendations. Journal of the International Society of Sports Nutrition, v. 15, n. 1, p. 38, 1 ago. 2018.

KIM, H. H. et al. Interactive effects of an isocaloric high-protein diet and resistance exercise on body composition, ghrelin, and metabolic and hormonal parameters in untrained young men: A randomized clinical trial. Journal of diabetes investigation, v. 5, n. 2, p. 242–247, 23 mar. 2014.

KRAEMER, W. J. et al. Influence of exercise training on physiological and performance changes with weight loss in men. Medicine and science in sports and exercise, v. 31, n. 9, p. 1320–1329, set. 1999.

LONGLAND, T. M. et al. Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. AMERICAN JOURNAL OF CLINICAL NUTRITION, v. 103, n. 3, p. 738–746, mar. 2016.

MAESTA, N.; OUTA ANGELELI, A. Y.; BURINI, R. C. Effect of the Dietary Protein Intake on the Muscular Gain, Nitrogen Balance and 15N-Glycine Kinetics of Athletes in Resistance Training. REVISTA BRASILEIRA DE MEDICINA DO ESPORTE, v. 14, n. 3, p. 215–220, jun. 2008.

MARTIN, W. F.; ARMSTRONG, L. E.; RODRIGUEZ, N. R. Dietary protein intake and renal function. Nutrition & metabolism, v. 2, p. 25, 20 set. 2005.

METTLER, S.; MITCHELL, N.; TIPTON, K. D. Increased protein intake reduces lean body mass loss during weight loss in athletes. Medicine and science in sports and exercise, v. 42, n. 2, p. 326–337, fev. 2010.

MILLER, B. F. et al. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. The Journal of Physiology, v. 567, n. Pt 3, p. 1021–1033, 15 set. 2005.

MOBERG, M. et al. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise. American journal of physiology. Cell physiology, v. 310, n. 11, p. C874-884, 1 jun. 2016.

MORTON, R. W. et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. Journal of Applied Physiology, v. 121, n. 1, p. 129–138, 1 jul. 2016.

MORTON, R. W.; MCGLORY, C.; PHILLIPS, S. M. Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Frontiers in physiology, v. 6, p. 245, 2015.

NAIR, K. S.; HALLIDAY, D.; GRIGGS, R. C. Leucine incorporation into mixed skeletal muscle protein in humans. The American Journal of Physiology, v. 254, n. 2 Pt 1, p. E208-213, fev. 1988.

PASIAKOS, S. M. et al. Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, v. 27, n. 9, p. 3837–3847, set. 2013.

PASIAKOS, S. M.; MCLELLAN, T. M.; LIEBERMAN, H. R. The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: a systematic review. Sports medicine (Auckland, N.Z.), v. 45, n. 1, p. 111–131, jan. 2015.

PHILLIPS, S. M. A Brief Review of Critical Processes in Exercise-Induced Muscular Hypertrophy. Sports Medicine (Auckland, N.z.), v. 44, n. Suppl 1, p. 71–77, 2014.

PHILLIPS, S. M. A brief review of higher dietary protein diets in weight loss: a focus on athletes. Sports medicine (Auckland, N.Z.), v. 44 Suppl 2, p. S149-153, nov. 2014.

PHILLIPS, S. M. Protein requirements and supplementation in strength sports. Nutrition (Burbank, Los Angeles County, Calif.), v. 20, n. 7–8, p. 689–695, ago. 2004.

POORTMANS JR, DELLALIEUX O. Do regular high protein diets have potential health risks on kidney function in athletes? Int J Sport Nutr Exerc Metab. 2000;10:28–38.

PYKA, G.; WISWELL, R. A.; MARCUS, R. Age-dependent effect of resistance exercise on growth hormone secretion in people. The Journal of clinical endocrinology and metabolism, v. 75, n. 2, p. 404–407, ago. 1992.

RES, P. T. et al. Protein ingestion before sleep improves postexercise overnight recovery. Medicine and Science in Sports and Exercise, v. 44, n. 8, p. 1560–1569, ago. 2012.

SLATER, G.; PHILLIPS, S. M. Nutrition guidelines for strength sports: Sprinting, weightlifting, throwing events, and bodybuilding. JOURNAL OF SPORTS SCIENCES, v. 29, n. 1, SI, p. S67–S77, 2011.

STOKES, T. et al. Recent Perspectives Regarding the Role of Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training. Nutrients, v. 10, n. 2, 7 fev. 2018.

TANG, J. E. et al. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. Journal of Applied Physiology (Bethesda, Md.: 1985), v. 107, n. 3, p. 987–992, set. 2009.

THOMAS, D. T.; ERDMAN, K. A.; BURKE, L. M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. JOURNAL OF THE ACADEMY OF NUTRITION AND DIETETICS, v. 116, n. 3, p. 501–528, mar. 2016.

WELLE, S. et al. Postprandial myofibrillar and whole body protein synthesis in young and old human subjects. The American journal of physiology, v. 267, n. 4 Pt 1, p. E599-604, out. 1994.

WOLFSON, R. L. et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science (New York, N.Y.), v. 351, n. 6268, p. 43–48, 1 jan. 2016.

Downloads

Publicado

2021-04-28