Predicting the effects of the single nucleotide polymorphism A122V on CXC chemokine receptor type 1 of Bos taurus (Artiodactyla: Bovidae) cattle by in silico analyses

Authors

  • Anete Ferraz Guzzi Universidade Federal do Vale do São Francisco UNIVASF
  • Felipe Santos de Luna Oliveira Universidade Federal do Vale do São Francisco UNIVASF
  • Márcia Maria de Souza Amaro Universidade Federal do Vale do São Francisco UNIVASF
  • Paulo Fernando Tavares Filho Universidade Federal do Vale do São Francisco UNIVASF
  • Jane Eyre Gabriel Universidade Federal do Vale do São Francisco UNIVASF

DOI:

https://doi.org/10.5007/2175-7925.2017v30n4p1

Abstract

This study aimed to perform in silico analyses of the primary and secondary structures of the bovine chemokine receptor CXCR1, the non-polymorphic and A122V-harboring polymorphic proteins to predict differences. Two sequences of the CXCR1 protein of Bos taurus cattle were selected from the non-redundant protein sequence database UniProtKB/Swiss-Prot: a) a non-polymorphic sequence (A7KWG0), with alanine (A) at position 122, and b) a sequence harboring the causal polymorphism A122V with substitution by valine (V) at the same position. Protein primary and secondary structures were analyzed using the ProtParam program and Chou & Fasman Protein Secondary Structure Prediction CFSSP algorithm. No differences in physical or chemical parameters were predicted from the primary structure of the two bovine protein sequences. The presence of a helix domain situated between positions 100 and 150 was only found in the non-polymorphic CXCR1 protein. Amino acid residues with different biochemical features were detected at position 122 in the ruminant and human CXCR1 protein sequences, suggesting that this peptide seems to be highly polymorphic in vertebrates. Findings described herein predict differences in the secondary structure pattern of non-polymorphic and polymorphic A122V-harboring CXCR1 proteins using bioinformatics tools.

 

Author Biographies

Anete Ferraz Guzzi, Universidade Federal do Vale do São Francisco UNIVASF

Colegiado de Pós-Graduação em Ciências Veterinárias no Semiárido, Campus de Ciências Agrárias, Universidade Federal do Vale do São Francisco, CEP 56.300-000, Petrolina – PE, Brasil

Felipe Santos de Luna Oliveira, Universidade Federal do Vale do São Francisco UNIVASF

Colegiado Acadêmico de Ciências Biológicas, Campus de Ciências Agrárias, Universidade Federal do Vale do São Francisco, CEP 56.300-000, Petrolina – PE, Brasil

Márcia Maria de Souza Amaro, Universidade Federal do Vale do São Francisco UNIVASF

Colegiado Acadêmico de Ciências Biológicas, Campus de Ciências Agrárias, Universidade Federal do Vale do São Francisco, CEP 56.300-000, Petrolina – PE, Brasil

Paulo Fernando Tavares Filho, Universidade Federal do Vale do São Francisco UNIVASF

Colegiado Acadêmico de Engenharia da Computação, Campus de Juazeiro, Universidade Federal do Vale do São Francisco, CEP 48902-300, Juazeiro – BA, Brasil

Jane Eyre Gabriel, Universidade Federal do Vale do São Francisco UNIVASF

Graduação em Ciências Biológicas pelo Instituto de Biociências, Letras e Ciências Exatas (1989), mestrado em Zootecnia pela Universidade Estadual Paulista Júlio de Mesquita Filho (1996) e doutorado em Ciências (Energia Nuclear na Agricultura) pela Universidade de São Paulo (2001). Atualmente, atua como Professora Adjunta III da Universidade Federal do Vale do São Francisco UNIVASF (Centro de Ciências Agrárias, Petrolina, PE). Tem experiência na área de Biologia Molecular Animal, Bioinformática, atuando principalmente nos seguintes temas: expressão gênica animal, genômica e proteômica, histologia geral.

 

References

BAGHERI, M.; MORADI-SHARHRBABAK, M.; MIRAIE-ASHTIANI, R.; SAFDARI-SHAHROUDI, M.; ABDOLLAHI-ARPANAHI, R. Case-control approach application for finding a relationship between candidate genes and clinical mastitis in Holstein dairy cattle. Journal of Applied Genetics, Poznan, v. 57, p. 107-112, 2016.

BOOTH, V.; KEIZER, D. W.; KAMPHUIS, M. B.; CLARK-LEWIS, I; SYKES, B. D. The CXCR3 binding chemokine IP-10/CXCL10: structure and receptor interactions. Biochemistry, Washington, v. 41, p. 10418-10425, 2002.

BOUTET, E.; LIEBERHERR, D.; TOGNOLLI, M.; SCHNEIDER, M.; BAIROCH, A. UniProtKB/Swiss-Prot. Methods in Molecular Biology, Berlin, v. 406, p. 89-112, 2007.

COSTA, F. F. P.; LIDANI, K. C. F.; NUNES, S. L.; GOUVEIA, J. J. S.; GABRIEL, J. E. Phylogenetical clustering among domestic ruminants from diacylglycerol-acyltransferase-1 lipogenic enzyme and biochemical characterization of its single nucleotide polymorphism K232A in bovine Bos taurus. Animal Biology Journal, New York, v. 4, p. 225-234, 2013.

COSTA, F. F. P.; NOGUEIRA, J. F; GOUVEIA, J. J. S.; GABRIEL, J. E. Characterizing the polymorphism K232A of the diacylglycerol-acyltransferase-1 lipogenic enzyme of bovine Bos taurus using in silico comparative protein prediction analyses. Brazilian Journal of Biology, São Carlos, v. 78, n. 2, 2018, in press.

FUTOSI, K.; FODOR, S.; MÓCSAI, A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. International Immunopharmacology, New York, v. 17, p. 638-650, 2013.

GARAU, A.; BERTINI, R.; MOSCA, M.; BIZZARRI, C.; ANACARDIO, R.; TRIULZI, S.; ALLEGRETTI, M.; GHEZZI, P.; VILLA, P. Development of a systemically-active dual CXCR1/CXCR2 allosteric inhibitor and its efficacy in a model of transient cerebral ischemia in the rat. European Cytokine Network, Montrouge, v. 17, p. 35-41, 2006.

KIMCHI-SARFATY, C.; OH, J. M.; KIM, I. W.; SAUNA, Z. E.; CALCAGNO, A. M.; AMBUDKAR, S. V.; GOTTESMAN, M. M. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science, Washington, v. 15, p. 525-528, 2007.

KUROCHKINA, N. Helix-helix interactions and their impact on protein motifs and assemblies. Journal of Theoretical Biology, Amsterdam, v. 264, p. 585-592, 2010.

MIZUARAI, S.; AOZASA, N.; KOTANI, H. Single nucleotide polymorphisms result in impaired membrane localization and reduced ATPase activity in multidrug transporter ABCG2. International Journal of Cancer, New York, v. 109, p. 238-246, 2004.

NELSON, L. D.; COX, M. Lehninger principles of biochemistry. 4 ed. New York: W. H. Freeman and Company, 2005. 1119 p.

PACE, C. N.; SCHOLTZ, J. M. A helix propensity scale based on experimental studies of peptides and proteins. Biophysical Journal, Cambridge, v. 75, p. 422-427, 1998.

PADMANABHAN, S.; BALDWIN, R. L. Straight-chain non-polar amino acids are good helix-formers in water. Journal of Molecular Biology, Amsterdam, v. 219, p. 135-137, 1991

.

PAWLIK, A.; SENDER, G.; KAPERA, M.; KORWIN-KOSSAKOWSKA, A. Association between interleukin 8 receptor α gene (CXCR1) and mastitis in dairy cattle. Central European Journal of Immunology, Poznan, v. 40, p. 153-158, 2015.

PARK, S. H.; DAS, B. B.; CASAGRANDE, F.; TIAN, Y.; NOTHNAGEL, H. J.; CHU, M.; KIEFER, H.; MAIER, K.; DE ANGELIS, A. A.; MARASSI, F. M.; OPELLA, S. J. Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature, London, v. 491, p. 779-783, 2012.

PIGHETTI, G. M.; KOJIMA, C. J.; WOJAKIEWICZ, L.; RAMBEAUD, M. The bovine CXCR1 gene is highly polymorphic. Veterinary Immunology and Immunopathology, New York, v. 145, p. 464-470, 2012.

POKORSKA, J.; DUSZA, M.; KUŁAJ, D.; ŻUKOWSKI, K.; MAKULSKA, J. Single nucleotide polymorphisms in the CXCR1 gene and its association with clinical mastitis incidence in Polish Holstein-Friesian cows. Genetics and Molecular Research, Ribeirão Preto, v. 15, p. 1-8, 2016.

ROST, B. Review: protein secondary structure prediction continues to rise. Journal of Structural Biology, San Diego, v. 134, p. 204-218, 2001.

TENSEN, C. P.; FLIER, J.; VAN DER RAAIJ-HELMER, E. M.; SAMPAT-SARDJOEPERSAD, S.; VAN DER SCHORS, R. C.; LEURS, R.; SCHEPER, R. J.; BOORSMA, D. M.; WILLEMZE, R. Human IP-9: a keratinocyte derived high affinity CXC-chemokine ligand for the IP-10/Mig receptor (CXCR3). Journal of Investigative Dermatology, New York, v. 112, p. 716-722, 1999.

VERBEKE, J.; VAN POUCKE, M.; PEELMAN, L.; PIEPERS, S.; DE VLIEGHER, S. Associations between CXCR1 polymorphisms and pathogen-specific incidence rate of clinical mastitis, test-day somatic cell count, and test-day milk yield. Journal of Dairy Science, Champaign, v. 97, n. 12, p. 7927-7939, 2014.

Downloads

Published

2017-12-08

Issue

Section

Artigos