Potenciais antecedentes da adoção de Business Analytics na contabilidade
DOI:
https://doi.org/10.5007/2175-8069.2023.e83785Palavras-chave:
business analytics, adoção, TOE, contabilidade, métodos mistosResumo
O objetivo desta pesquisa é analisar quais fatores antecedem a intenção de adoção de Business Analytics (BA) na contabilidade, de acordo com profissionais atuantes na área. Aplicou-se métodos mistos com estratégia explanatória sequencial operacionalizada por meio de survey e por entrevistas semi-estruturadas, com profissionais de contabilidade. Como técnicas de análise de dados utilizou-se PLS e análise de conteúdo. O resultado da pesquisa apresentou diversos fatores tecnológicos, organizacionais, ambientais e humanos que impactam negativa ou positivamente na intenção para adotar BA, a maior parte com lastro na literatura, contudo surgiram fatores novos, alguns específicos do contexto contábil. Evidenciaram-se variáveis moderadoras da intenção de adoção de BA. A pesquisa apresenta uma lista de fatores que contribuem para direcionar a adoção de BA e abrir possibilidades para que a comunidade contábil, gestores e fornecedores de tecnologia atuem na promoção da adoção de BA.
Referências
Appelbaum, D., Kogan, A., Vasarhelyi, M., & Yan, Z. (2017). Impact of business analytics and enterprise systems on managerial accounting. International Journal of Accounting Information Systems, 25, 29-44. doi.org/10.1016/j.accinf.2017.03.003
Aydiner, A. S., Tatoglu, E., Bayraktar, E., Zaim, S., & Delen, D. (2019). Business analytics and firm performance: The mediating role of business process performance. Journal of business research, 96, 228-237. doi.org/10.1016/j.jbusres.2018.11.028
Bhatiasevi, V., & Naglis, M. (2020). Elucidating the determinants of business intelligence adoption and organizational performance. Information Development, 36(1), 78-96. doi.org/10.1177%2F0266666918811394
Boži?, K., & Dimovski, V. (2019). Business intelligence and analytics use, innovation ambidexterity, and firm performance: A dynamic capabilities perspective. The Journal of Strategic Information Systems, 28(4), 101578. doi.org/10.1016/j.jsis.2019.101578
Caldeira, M. (1998). Understanding the adoption and use of information systems/information technology in small and medium-sized manufacturing enterprises: a study in Portuguese industry. Ph. D. Thesis, Cranfield University
Camm, J. D., Bowers, M.R. & Davenport, T.H. (2020, June 16). The Recession’s Impact on Analytics and Data Science. MIT Sloan Management Review. Recuperado em 03 de julho, 2020, de https://sloanreview.mit.edu/article/the-recessions-impact-on-analytics-and-data-science/
Cohen, J. (1992). Statistical power analysis. Current directions in psychological science, 1(3), 98-101. https://doi.org/10.1111/1467-8721.ep10768783
Coyne, E. M., Coyne, J. G., & Walker, K. B. (2018). Big Data information governance by accountants. International Journal of Accounting & Information Management, 26(1), 153-170. doi.org/10.1108/IJAIM-01-2017-0006
Creswell, J. W. (2010). Projeto de pesquisa métodos qualitativo, quantitativo e misto. In Projeto de pesquisa métodos qualitativo, quantitativo e misto (pp. 296-296).
Davenport, T., & Harris, J. (2017). Competing on analytics: Updated, with a new introduction: The new science of winning. Harvard Business Press.
Depietro, R., Wiarda, E., & Fleischer, M. (1990). The context for change: Organization, technology and environment. The processes of technological innovation, 199, 151-175.
Engel, R. J., & Schutt, R. K. (2013). Measurement. The Practice of Research in Social Work. Ch. 4.
FSN (2020). The Future of Analytics in The Finance Function - Global Survey 2020. United Kingdom: The Modern Finance Forum.
Gepp, A., Linnenluecke, M. K., O’Neill, T. J., & Smith, T. (2018). Big data techniques in auditing research and practice: Current trends and future opportunities. Journal of Accounting Literature, 40, 102-115. doi.org/10.1016/j.acclit.2017.05.003
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009). Análise multivariada de dados. Bookman editora.
Hair Jr, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications.
Hair Jr, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM). European business review. doi.org/10.1108/EBR-10-2013-0128
Holsapple, C., Lee-Post, A., & Pakath, R. (2014). A unified foundation for business analytics. Decision Support Systems, 64, 130-141. doi.org/10.1016/j.dss.2014.05.013
Huikku, J., Hyvönen, T., & Järvinen, J. (2017). The role of a predictive analytics project initiator in the integration of financial and operational forecasts. Baltic Journal of Management. doi.org/10.1108/BJM-05-2017-0164
Knudsen, D. R. (2020). Elusive boundaries, power relations, and knowledge production: A systematic review of the literature on digitalization in accounting. International Journal of Accounting Information Systems, 36, 100441. doi.org/10.1016/j.accinf.2019.100441
Koufteros, X. A. (1999). Testing a model of pull production: a paradigm for manufacturing research using structural equation modeling. Journal of operations Management, 17(4), 467-488. doi.org/10.1016/S0272-6963(99)00002-9
Krippendorff, K. (2018). Content analysis: An introduction to its methodology. Sage publications.
Lai, Y., Sun, H., & Ren, J. (2018). Understanding the determinants of big data analytics (BDA) adoption in logistics and supply chain management. The International Journal of Logistics Management. doi.org/10.1108/IJLM-06-2017-0153
Li, H., Dai, J., Gershberg, T., & Vasarhelyi, M. A. (2018). Understanding usage and value of audit analytics for internal auditors: An organizational approach. International Journal of Accounting Information Systems, 28, 59-76. doi.org/10.1016/j.accinf.2017.12.005
Marconi, M. D. A., & Lakatos, E. M. (2004). Metodologia científica (Vol. 4). São Paulo: Atlas.
McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: the management revolution. Harvard business review, 90(10), 60-68.
MicroStrategy (2020). 2020 Global State of Enterprise Analytics: minding the data-drive gap. Virginia: MicroStrategy.
Mikalef, P., Pappas, I. O., Krogstie, J., & Giannakos, M. (2018). Big data analytics capabilities: a systematic literature review and research agenda. Information Systems and e-Business Management, 16(3), 547-578.
Mikalef, P., Pappas, I. O., Krogstie, J., & Pavlou, P. A. (2020). Big data and business analytics: A research agenda for realizing business value. Information & Management, 57(1).
Nam, D., Lee, J., & Lee, H. (2019). Business analytics adoption process: An innovation diffusion perspective. International Journal of Information Management, 49, 411-423. doi.org/10.1016/j.ijinfomgt.2019.07.017
Nielsen, S. (2018). Reflections on the applicability of business analytics for management accounting–and future perspectives for the accountant. Journal of Accounting & Organizational Change. doi.org/10.1108/JAOC-11-2014-0056
Perkhofer, L. M., Hofer, P., Walchshofer, C., Plank, T., & Jetter, H. C. (2019). Interactive visualization of big data in the field of accounting. Journal of Applied Accounting Research. doi.org/10.1108/JAAR-10-2017-0114
Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of applied psychology, 88(5), 879.
Ramanathan, R., Philpott, E., Duan, Y., & Cao, G. (2017). Adoption of business analytics and impact on performance: a qualitative study in retail. Production Planning & Control, 28(11), 985-998. doi.org/10.1080/09537287.2017.1336800
Rikhardsson, P., & Yigitbasioglu, O. (2018). Business intelligence & analytics in management accounting research: Status and future focus. International Journal of Accounting Information Systems, 29, 37-58. doi.org/10.1016/j.accinf.2018.03.001
Schneider, G. P., Dai, J., Janvrin, D. J., Ajayi, K., & Raschke, R. L. (2015). Infer, predict, and assure: Accounting opportunities in data analytics. Accounting Horizons, 29(3), 719-742. doi.org/10.2308/acch-51140
Singh, N., Lai, K. H., Vejvar, M., & Cheng, T. E. (2019). Data driven auditing: A predictive modeling approach to fraud detection and classification. Journal of Corporate Accounting & Finance, 30(3), 64-82. doi.org/10.1002/jcaf.22389
Straub, D., Boudreau, M. C., & Gefen, D. (2004). Validation guidelines for IS positivist research. Communications of the Association for Information systems, 13(1), 24. doi.org/ 10.17705/1CAIS.01324
Sun, S., Cegielski, C. G., Jia, L., & Hall, D. J. (2018). Understanding the factors affecting the organizational adoption of big data. Journal of Computer Information Systems, 58(3), 193-203. doi.org/10.1080/08874417.2016.1222891
Tong, A., Sainsbury, P., & Craig, J. (2007). Consolidated criteria for reporting qualitative research (COREQ): a 32-item checklist for interviews and focus groups. International journal for quality in health care, 19(6), 349-357. doi.org/10.1093/intqhc/mzm042
Tornatzky, L., & Fleischer, M. (1990). The process of technology innovation. Lexington, MA: Lexington Books, 165.
Venkatesh, V., Brown, S. A., & Bala, H. (2013). Bridging the qualitative-quantitative divide: Guidelines for conducting mixed methods research in information systems. MIS quarterly, 21-54. jstor.org/stable/43825936.
Wadan, R., & Teuteberg, F. (2019). Understanding Requirements and Benefits of the Usage of Predictive Analytics in Management Accounting: Results of a Qualitative Research Approach. International Conference on Business Information Systems (pp. 100-111). Springer, Cham.
Wang, Y. S., Li, H. T., Li, C. R., & Zhang, D. Z. (2016). Factors affecting hotels' adoption of mobile reservation systems: A technology-organization-environment framework. Tourism Management, 53, 163-172. doi.org/10.1016/j.tourman.2015.09.021
Weiner, B. J., Amick, H., & Lee, S. Y. D. (2008). Conceptualization and measurement of organizational readiness for change: a review of the literature in health services research and other fields. Medical care research and review, 65(4), 379-436. doi.org/10.1177/1077558708317802
Zhu, K., Kraemer, K. L., & Xu, S. (2006). The process of innovation assimilation by firms in different countries: a technology diffusion perspective on e-business. Management science, 52(10), 1557-1576. doi.org/10.1287/mnsc.1050.0487
Yadegaridehkordi, E., Nilashi, M., Shuib, L., Nasir, M. H. N. B. M., Asadi, S., Samad, S., & Awang, N. F. (2020). The impact of big data on firm performance in hotel industry. Electronic Commerce Research and Applications, 40. doi.org/10.1016/j.elerap.2019.100921
Yin, R. K. (2015). Estudo de Caso-: Planejamento e métodos. Bookman editora.
Yusof, M. M., Kuljis, J., Papazafeiropoulou, A., & Stergioulas, L. K. (2008). An evaluation framework for Health Information Systems: human, organization and technology-fit factors (HOT-fit). International journal of medical informatics, 77(6), 386-398. doi.org/10.1016/j.ijmedinf.2007.08.011
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Os Direitos Autorais para artigos publicados neste periódico são do autor, com direitos de primeira publicação para a Revista. Em virtude de aparecerem nesta Revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais, de exercício profissional e para gestão pública. A Revista adotou a licença Creative Commons Atribuição 4.0 Internacional - CC BY NC ND. Esta licença permite acessar, baixar (download), copiar, imprimir, compartilhar, reutilizar e distribuir os artigos desde que com a citação da fonte, atribuindo os devidos créditos de autoria. Nesses casos, nenhuma permissão é necessária por parte dos autores ou dos editores. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou um capítulo de livro).
Esta obra está licenciada sob uma Licença Creative Commons.