Does managing a retirement portfolio via rate of return, Sharpe ratio and social interaction generate good returns? An analysis for the years 2017 to 2020
DOI:
https://doi.org/10.5007/2175-8085.2023.e84889Keywords:
Reinforcement learning, Social security, Portfolio managementAbstract
Motivated by the economic context, the social security reform in Brazil, and the behavior of Brazilian individual investors in the retirement-fund market, this study designs an algorithm to manage a real retirement-fund portfolio. In our model, the theoretical manager of the fund can allocate its resources among four securities belonging to the same financial institution: two fixed income funds; and two private credit funds. Innovatively, the machine learning algorithm optimizes the portfolio allocation using reinforcement learning, which rewards good decisions and punishes bad decisions based on individual and social criteria. The algorithm presented a consistent and stable performance in all the six scenarios of simulation, outperforming the actual portfolio and s random strategy by considerable and significant average returns.
References
CHOI, J. J.; LAIBSON, D.; MADRIAN, B. C.; METRICK, A. Reinforcement learning and savings behavior. The Journal of finance, 64(6), 2515-2534, 2009.
Comissão de Valores Mobiliários. (2023). https://conteudo.cvm.gov.br/menu/regulados/fundos/consultas/fundos.html. Acesso em Março de 2023.
FAMA, E. F.; FRENCH, K. R. A five-factor asset pricing model. Journal of financial economics, 116(1), 1-22, 2015.
FERREIRA, G. THE TEN BIGGEST PENSION FUNDS IN BRAZIL PERFORM BELOW CDI. Valor Econômico. Available in: https://www.valor.com.br/financas/6244401/maiores-fundos-de-previdencia-rendem-menosque-o-cdi, 2019
.
FLIETH, B.; FOSTER, J. Interactive expectations. Journal of Evolutionary Economics, 12(4), 375-395, 2002.
FORSYTH, P. A.; VETZAL, K. R. Optimal asset allocation for retirement saving: Deterministic vs. time consistent adaptive strategies. Applied Mathematical Finance, 26(1), 1-37, 2019.
GALE, D.; KARIV, S. Bayesian learning in social networks. Games and economic behavior, 45(2), 329-346, 2003.
HOMMES, C. H. Heterogeneous agent models in economics and finance. Handbook of computational economics, 2, 1109-1186, 2006.
JIANG, Z.; LIANG, J. Cryptocurrency portfolio management with deep reinforcement learning. In 2017 Intelligent Systems Conference (IntelliSys) (pp. 905-913). IEEE, 2017.
KAUFMAN, B. E. Emotional arousal as a source of bounded rationality. Journal of Economic Behavior & Organization, 38(2), 135-144, 1999.
LUX, T. The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions. Journal of Economic Behavior & Organization, 33(2), 143-165, 1998
MATSUI, T.; GOTO, T.; IZUMI, K. Acquiring a government bond trading strategy using reinforcement learning. Journal of Advanced Computational Intelligence and Intelligent Informatics, 13(6), 691-696, 2009.
MULLAINATHAN, S.; SPIESS, J. Machine learning: an applied econometric approach. Journal of Economic Perspectives, 31(2), 87-106, 2017.
NEVMYVAKA, Y.; FENG, Y.; KEARNS, M. Reinforcement learning for optimized trade execution. In Proceedings of the 23rd international conference on Machine learning (pp. 673-680), 2006.
ROTH, A. E.; EREV, I. Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term. Games and economic behavior, 8(1), 164-212, 1995.
SHANTHA, K. V. A.; Xiaofang, C.; Gamini, L. P. S. A conceptual framework on individual investors’ learning behavior in the context of stock trading: An integrated perspective. Cogent Economics & Finance, 6(1), 1544062, 2018.
TOPA, G. Social interactions, local spillovers and unemployment. The Review of Economic Studies, 68(2), 261-295, 2021.
WANG, H.; ZHOU, X. Y. Continuous?time mean–variance portfolio selection: A reinforcement learning framework. Mathematical Finance, 30(4), 1273-1308, 2020.
Downloads
Published
Issue
Section
License
Os Direitos Autorais para artigos publicados neste periódico são do autor. Em virtude de aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais, de exercício profissional e para gestão pública. A Revista adotou a licença Creative Commons - Atribuição-NãoComercial-SemDerivações 4.0 Internacional. Esta licença permite acessar, baixar (download), compartilhar o conteúdo dos artigos desde que citada a fonte, atribuindo os devidos créditos de autoria.

Esta obra está licenciada sob uma Licença Creative Commons - Atribuição-NãoComercial-SemDerivações 4.0 Internacional.
