Heterologous expression of predicted promoter site for paraquat-inducible genes of the bacterium Chromobacterium violaceum is increased by plumbagin
DOI:
https://doi.org/10.5007/2175-7925.2017v30n2p1Abstract
The aim of this study was to evaluate functionally the effect of plumbagin on the heterologous expression of a predicted promoter region of open reading frames of paraquat-inducible (pqi) genes revealed during genome annotation analyses of the bacterium Chromobacterium violaceum. First, the promoter of interest was amplified using specific primers and cloned into a conjugative vector carrying the Escherichia coli lacZ gene without a promoter. The heterologous expression of the predicted promoter region was then examined in the presence of 50 µg/mL plumbagin by ?-galactosidase expression assays. Significant differences were detected in the levels of ?-galactosidase as a result of the activation of the promoter region of interest in response to plumbagin at the concentration tested. On the other hand, no growth of the wild strain of C. violaceum was found during its incubation in nutrient broth medium containing different concentrations of plumbagin compared to control group. The findings described herein demonstrate that the heterologous expression of a predicted promoter site of pqi genes of C. violaceum is induced by plumbagin in a fusion strain, giving insights into the functional characterization of intrinsic regulatory DNA motifs annotated in this bacterial genome.
References
BRAZILIAN NATIONAL GENOME PROJECT CONSORTIUM. The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proceedings of the National Academy of Sciences of the United States of America, Washington, v. 100, p. 11660-11665, 2003.
BRITO, C. F.; CARVALHO, C. B.; SANTOS, F.; GAZZINELLI, R. T.; OLIVEIRA, S. C.; AZEVEDO, V.; TEIXEIRA, S. M. Chromobacterium violaceum genome: molecular mechanisms associated with pathogenicity. Genetics and Molecular Research, Ribeirão Preto, v. 3, n. 1, p. 148-161, 2004.
CANELA-XANDRI, O.; SAGUÉS, F.; BUCETA, J. Interplay between intrinsic noise and the stochasticity of the cell cycle in bacterial colonies. Biophysical Journal, Massachusetts, v. 98, n. 11, p. 2459-2468, 2010.
CASTRO-GOMES, T.; CARDOSO, M. S.; DAROCHA, W. D.; LAIBIDA, L. A.; NASCIMENTO, A. M.; ZUCCHERATO, L. W.; HORTA, M. F.; BEMQUERER, M. P.; TEIXEIRA, S. M. Identification of secreted virulence factors of Chromobacterium violaceum. Journal of Microbiology, Seoul, v. 52, n. 4, p. 350-353, 2014.
CIPRANDI, A.; BARAÚNA, R. A.; SANTOS, A. V.; GONÇALVES, E. C.; CAREPO, M. S. P.; SCHNEIDER, M. P. C.; SILVA, A. Proteomic response to arsenic stress in Chromobacterium violaceum. Journal of Integrated OMICS, Lisbon, v. 2, p. 69-73, 2012.
CORDEIRO, I. B.; CASTRO, D. P.; NOGUEIRA, P. P.; ANGELO, P. C.; NOGUEIRA, P. A.; GONÇALVES, J. F.; PEREIRA, A. M.; GARCIA, J. S.; SOUZA, G. H.; ARRUDA, M. A.; EBERLIN, M. N.; ASTOLFI-FILHO, S.; ANDRADE, E. V.; LÓPEZ-LOZANO, J. L. Electrophoresis and spectrometric analyses of adaptation-related proteins in thermally stressed Chromobacterium violaceum. Genetics and Molecular Research, Ribeirão Preto, v. 12, n. 4, p. 5057-5071, 2013.
DAL’MOLIN, C.; ANTÔNIO, R.; PORTO, L. Chromobacterium violaceum ATCC12472: multi-drug and ethidium bromide resistant. 2009. Available from <http://hdl.handle.net/10101/npre.2009.3366.1>.
FARR, S. B.; KOGAMA, T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. FEMS Microbiology Reviews, Lausanne, v. 55, p. 561-585, 1991.
GABRIEL, J. E.; GUERRA-SLOMPO, E. P.; DE CARVALHO, F. A. L.; MADEIRA, H. M. F.; DE VASCONCELOS, A. T. R. Heterologous induction of a predicted promoter sequence for paraquat-inducible genes of Chromobacterium violaceum in response to paraquat compound. Brazilian Journal of Biology, São Carlos, v. 75, n. 2, p. 503-504, 2015a.
GABRIEL, J. E.; GUERRA-SLOMPO, E. P.; DE SOUZA, E. M.; DE CARVALHO F. A. L.; MADEIRA, H. M. F.; DE VASCONCELOS, A. T. R. Superoxide radical-generating compounds activate a predicted promoter site for paraquat-inducible genes of the Chromobacterium violaceum bacterium in a dose-dependent manner. Genetics and Molecular Research, Ribeirão Preto, v. 14, n. 3, p. 10139-10144, 2015b.
GILBERT, S. G. A small dose of toxicology: the health effects of common chemicals. Boca Raton: CRC Press, 2004. 279 p.
GRANGEIRO, T. B.; JORGE, D. M.; BEZERRA, W. M.; VASCONCELOS, A. T.; SIMPSON, A. J. Transport genes of Chromobacterium violaceum: an overview. Genetics and Molecular Research, Ribeirão Preto, v. 3, p. 117-133, 2004.
HUNGRIA, M.; NICOLÁS, M. F.; GUIMARÃES, C. T.; JARDIM, S. N.; GOMES, E. A.; DE VASCONCELOS, A. T. T. Tolerance to stress and environmental adaptability of Chromobacterium violaceum. Genetics and Molecular Research, Ribeirão Preto, v. 3, p. 102-116, 2004.
IMLAY, J. A.; FRIDOVICH, I. Assay of metabolic superoxide production in Escherichia coli. Journal of Biological Chemistry, La Jolla, v. 266, n. 11, p. 6957-6965, 1991.
KLAUS, V.; HARTMANN, T.; GAMBINI, J.; GRAF, P.; STAHL, W.; HARTWIG, A.; KLOTZ, L. O. 1,4-Naphthoquinones as inducers of oxidative damage and stress signaling in HaCaT human keratinocytes. Archives of Biochemistry and Biophysics, New York, v. 496, p. 93-100, 2010.
KOH, Y.-S.; ROE, J.-H. Isolation of a novel paraquat-inducible (pqi) gene regulated by the soxRS locus in Escherichia coli. Journal of Bacteriology, Washington, v. 177, n. 10, p. 2673-2678, 1995.
KOH, Y.-S.; ROE, J.-H. Dual regulation of the paraquat-inducible gene pqi-5 by SoxS and RpoS in Escherichia coli. Molecular Microbiology, Baltimore, v. 22, p. 53-61, 1996.
LIN, C. N.; SYU, W. J.; SUN, W. S.; CHEN, J. W.; CHEN, T. H.; DON, M. J.; WANG, S. H. A role of ygfZ in the Escherichia coli response to plumbagin challenge. Journal of Biomedical Science, Taipei, v. 17, p. 1-13, 2010.
MARTINEZ, R.; VELLUDO, M. A. S. L.; SANTOS, V. R.; DINAMARCO, P. V. Chromobacterium violaceum infection in Brazil. A case report. Revista do Instituto de Medicina Tropical de São Paulo, São Paulo, v. 42, n. 2, p. 111-113, 2000.
MILLER, J. H. Assay of β-galactosidase. In: MILLER, J. H. (Ed.). Experiments in molecular genetics. New York: CSH Laboratory Press, 1972. p. 352-355.
PADHYE, S.; DANDAWATE, P.; YUSUFI, M.; AHMAD, A.; SARKAR, F. H. Perspectives on medicinal properties of plumbagin and its analogs. Medicinal Research Reviews, New York, v. 32, n. 6, p. 1131-1158, 2012.
SAS INSTITUTE. SAS/STAT® software: changes and enhancements through release 6.12. Cary: Statistical Analysis System Institute, 1997. 1167 p.
SILVA, R.; ARARIPE, J. R.; RONDINELLI, E.; URMÉNYI, T. P. Gene expression in Chromobacterium violaceum. Genetics and Molecular Research, Ribeirão Preto, v. 3, n. 1, p. 64-75, 2004.
SPAINK, H. P.; OKKER, J. H.; WIJFFELMAN, C. A.; PEES, E.; LUGTENBERG, B. J. J. Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JL. Plant Molecular Biology, Zurich, v. 9, p. 27-39, 1987.
TILAK, J. C.; ADHIKARI, S.; DEVASAGAYAM, T. P. Antioxidant properties of Plumbago zeylanica, an Indian medicinal plant and its active ingredient plumbagin. Redox Report, London, v. 9, p. 219-227, 2004.
Downloads
Published
Issue
Section
License
After the electronic publication of the manuscript, the authors are entitled, without any restriction, on its contents.
License Creative Commons Atribuição 4.0 Internacional - CC BY
Authors are able to take on additional contracts separately, non-exclusive distribution of the version of the paper published in this journal (ex.: publish in institutional repository or as a book), with an acknowledgment of its initial publication in this journal.