Auction Market: an application with agent-based model

Authors

DOI:

https://doi.org/10.5007/2175-8085.2024.e106002%20

Keywords:

Leisure Class, Conspicuous Consumption, Pecuniary Emulation

Abstract

Agent-based models are essential tools in Economics, enabling the simulation and evaluation of economic policies in dynamic environments. They bridge the gap between theory and reality by providing a virtual space to test economic decisions before implementation. This study develops an agent-based model to represent the behavior of agents in a double auction market, where buyers and sellers adjust their bids and price expectations over time. The results show that the model is consistent with auction theory, with prices reaching a dynamic equilibrium as agents' expectations adjust. These findings highlight the applicability of agent-based modeling in analyzing decentralized markets, offering valuable insights for improving auction mechanisms and economic policies.

Author Biographies

Luis Gustavo Bornia, Universidade Federal de Santa Catarina

Graduado, Universidade Federal de Santa Catarina

Adilson Giovanini, Universidade Do Estado de Santa Catarina

Professor do Departamento de Gestão Pública, Universidade Federal de Santa Catarina

Mauricio Simiano Nunes, Universidade Federal de Santa Catarina

Professor do Departamento de Economia e Relações Internacionais, UFSC

References

AGHAIE, V.; ALIZADEH, H.; AFSHAR, A. Agent-Based hydro-economic modelling for analysis of groundwater-based irrigation Water Market mechanisms. Agricultural Water Management, v. 234, p. 106140, 2020.

ALMEIDA, H. F.; CHACHA, L. A. Dilema do Prisioneiro Iterado e Estratégia Evolucionariamente Estável: Uma Abordagem Econômica. Revista de Economia, v. 40, n. 1, p. 35–53, 2014.

ALMEIDA, H. J. F.; GIOVANINI, A.; PEREIRA, W. M.; COELHO, A. R. A. Inovação e Aprendizado Em Um Ambiente De Racionalidade Limitada E Sujeito A Externalidades De Rede: Uma Abordagem De Escolha Discreta. Análise Econômica, v. 37, n. 73, 2019.

ALMEIDA, H. J. F.; SILVEIRA, J. J. da. Formação De Expectativas De Inflação Em Um Ambiente De Racionalidade Limitada: Uma Abordagem De Escolha Discreta. Estudos Econômicos (São Paulo), v. 47, n. 3, p. 465–486, 2017.

BEZANSON, J.; CHEN, J.; CHUNG, B.; KARPINSKI, S.; SHAH, V. B.; VITEK, J.; ZOUBRITZKY, L. Julia: Dynamism and Performance Reconciled by Design. Proc. ACM Program. Lang., New York, NY, USA, v. 2, n. OOPSLA, p. 120:1--120:23, 2018.

BEZANSON, J.; EDELMAN, A.; KARPINSKI, S.; SHAH, V. B. Julia: A Fresh Approach To Numerical Computing. Review, v. 59, n. 1, p. 65–98, 2017.

BONABEAU, E. Agent-Based Modeling: Methods And Techniques For Simulating Human Systems. Proceedings of the National Academy of Sciences, v. 99, n. suppl 3, p. 7280 LP – 7287, 2002.

FARMER, J. D.; LO, A. W. Frontiers Of Finance: Evolution And Efficient Markets. National Academy of Science, 1999.

GIOVANINI, A.; ALMEIDA, H. J. F. H. Isolamento Social Do Covid-19 E Suas Influências Para Consumidores, Restaurantes E Aplicativos: Uma Análise Com Modelo Baseado Em Agentes. Revista Brasileira de Economia de Empresas, 2021.

GJERSTAD, S.; DICKHAUT, J. Price Formation In Double Auctions. Games And Economic Behavior, 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA, v. 22, n. 1, p. 1–29, 1998.

GODE, D. K.; SUNDER, S. What Makes Markets Allocationally Efficient? Quarterly Journal of Economics, v. 112, n. 2, p. 603–630, 1997.

HANS M. AMMAN. What is Computational Economics? Computational Economics, v. 10, 1997.

KLEMPERER, P. Auction Theory: A Guide To The Literature. Journal of Economic Surveys, v. 13, n. 3, p. 227–286, 1999.

LI, Q.; YAO, H.; MAI, T.; JIANG, C.; ZHANG, Y. Reinforcement-Learning-and Belief- Learning-Based Double Auction Mechanism for Edge Computing Resource Allocation. IEEE Internet of Things Journal, v. 7, n. 7, p. 5976–5985, 2020.

MARIN, S. R.; FERNANDEZ, B. P. M.; DE VASCONCELOS, D. S. Agent Based Models And Complex Individuals: An Epistemological Analysis. OEconomia, v. 10, n. 2, p. 231– 256, 2020.

MARIN, S. R.; FERNANDEZ, B. P. M. Rethinking Economic Methodology: Complexity, Agent-based models (ABMs) and Individuals. XXI ENCONTRO DE ECONOMIA DA REGIÃO SUL. 2018.

NAVEEN, K. P.; SUNDARESAN, R. Double-Auction Mechanisms for Resource Trading Markets. IEEE/ACM TRANSACTIONS ON NETWORKING, v. 29, n. 3, p. 1210–1223, 2021.

OLSEN, R. A. Behavioral Finance And Its Implications For Stock-Price Volatility. Financial Analysts Journal, v. 54, n. 2, p. 10–18, 1998.

ÖZER, A. H. A Double Auction Based Mathematical Market Model And Heuristics For Internet-Based Secondhand Durable Good Markets. Computers & Operations Research, v. 111, p. 116–129, 2019.

PATEL, Y. S.; MALWI, Z.; NIGHOJKAR, A.; MISRA, R. Truthful Online Double Auction Based Dynamic Resource Provisioning For Multi-Objective Trade-Offs In Iaas Clouds. Cluster Computing, 2021.

TESFATSION, L. Agent-Based Computational Economics: A Constructive Approach to Economic Theory: Staff General Research Papers Archive. [S. l.]: Iowa State University, Department of Economics, 2006.

TESFATSION, L. Agent-Based Computational Economics: Overview and Brief History. Economics Working Papers, 2021.

TESFATSION, L. Modeling Economic Systems As Locally-Constructive Sequential Games. Journal of Economic Methodology, v. 24, n. 4, p. 384–409, 2017.

VAN DEN BERGH, W. M.; BOER, K.; DE BRUIN, A.; KAYMAK, U.; SPRONK, J. On Intelligent-Agent Based Analysis Of Financial Markets. Erasmus University Working Paper, 2002.

VYTELINGUM, P.; CLIFF, D.; JENNINGS, N. R. Strategic Bidding In Continuous Double Auctions. Artificial Intelligence, v. 172, n. 14, p. 1700–1729, 2008.

WU, J.; WU, C. On the Double Auction Mechanism Design for Electricity Market. In: IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, 2020.

ZAPPA NARDELLI, F.; BELYAKOVA, J.; PELENITSYN, A.; CHUNG, B.; BEZANSON, J.; VITEK, J. Julia Subtyping: A Rational Reconstruction. Proc. ACM Program. Lang., New York, NY, USA, v. 2, n. OOPSLA, p. 113:1-113:27, 2018

Published

2025-10-29