Jornalismo em um novo ambiente informativo estruturado por Sistemas Cognitivos Artificiais

Autores

DOI:

https://doi.org/10.5007/1984-6924.2023.95083

Palavras-chave:

Jornalismo, Sistemas cognitivos artificiais, Relevância social

Resumo

O jornalismo evoluiu ao longo dos séculos, adaptando-se para captar a atenção do público. Com o surgimento de sistemas inteligentes como chatbots e softwares que transformam dados em narrativas de notícias, dando origem à Mídia Artificial, sistemas computacionais com viés cognitivo criam conteúdo em tempo real por meio de relacionamento interativo com a audiência. Esse novo ecossistema de informações turva as fronteiras entre conteúdo humano e o produzido por máquinas. A introdução de Sistemas Cognitivos Artificiais estabelece uma parceria simbiótica entre agentes biológicos e artificiais, transformando a forma como a informação é consumida. Essa Interação de Informação Humana substitui a relação mestre-escravo anterior, da Revolução Industrial. O artigo aponta para a hipótese da consolidação da Mídia Artificial, na qual é possível a máquina processar eventos, contextos e ações, lidando inicialmente com situações imediatas e adquirindo cada vez mais uma capacidade preditiva ou prospectiva, assim remodelando a produção, distribuição e consumo de notícias.

Biografia do Autor

Walter Lima Junior, Universidade Federal de São Paulo

Professor of Artificial Cognitive Systems in the Institute of Science and Technology at the Federal University of Sao Paulo/Unifesp. Post-doctorate Man-computer symbiosis in the Mechatronics Engineering Department at the University of Sao Paulo/USP.

Referências

ALBERS, M. Human-Information Interaction with Complex Information for Decision-Making. Informatics, v. 2, n. 2, p. 4–19, 2015.

C. LEWIS, S.; GUZMAN, A.; R. SCHMIDT, T. Automation, Journalism, and Human-Machine Communication: Rethinking Roles and Relationships of Humans and Machines in News. Digital Journalism, p. 1–19, 2019.

CARLISLE, J. H. Evaluating the impact of office automation on top management communication. National Computer Conference and Exposition. Anais...1976

CHEN, M.; HERRERA, F.; HWANG, K. Cognitive Computing: Architecture, Technologies and Intelligent Applications. IEEE Access, v. 6, p. 19774–19783, 2018.

DEUZE, M. What Journalism Is ( Not ). Social Media + Society, p. 1–4, 2019.

E. KELLY III, J.; HAMM, S. Smart Machines: IBM’s Watson and the Era of Cognitive Computing. New York: Columbia Business School, 2013.

FIDEL, R. Human Information Interaction?: An ecological approach to information behavior. London, England: MIT Press, 2012.

FORSYTHE, C.; BERNARD, M. L.; GOLDSMITH, T. E. Cognitive System: human cognitive models in Systems Design. Mahwah, New Jersey: Lawrence Erlbaum Associates, Inc., Publishers, 2006.

GRIFFITH, D. Beyond Usability: The New Symbiosis. Ergonomics in Design: The Quarterly of Human Factors Applications, v. 13, n. 3, p. 30–34, jun. 2005.

GRUDIN, J. A moving target: the evolution of human-computer interaction. In: JACKO, J. A. (Ed.). . The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies, and Emerging Applications. 3rd. ed. [s.l: s.n.]. p. 2.

GYNNILD, A. Journalism innovation leads to innovation journalism: The impact of computational exploration on changing mindsets. Journalism, v. 15, n. 6, p. 713–730, 2014.

LEV MANOVICH. The Language of New Media. Cambridge, MA, USA: MIT Press, 2002.

LICKLIDER, J. C. R. Man-Computer Symbiosis. IRE Transactions on Human Factors in Eletronics, p. 4–11, 1960.

LICKLIDER, J. C. R. Libraries of the future. [s.l.] MIT PRESS, 1965.

MARCHIONINI, G. Human- information interaction research and development. Library {&} Information Science Research, v. 30, p. 165–174, 2008.

MCSHANE, M. Natural Language Understanding (NLU, not NLP) in Cognitive Systems. AI Magazine, v. 38, n. 4, p. 43–56, 2017.

PAVLIK, J. V. Computing, Algorithms and Data: Transforming Journalism and MediaII Encontro Internacional de Tecnologia, Comunicação e Ciência Cognitiva (EITCCC), 2016a.

PAVLIK, J. V. Cognitive computing and journalism: implications of algorithms, artificial intelligence and data for the news media and society. Brazilian Journal of Technology, Communication, and Cognitive Science, v. 4, n. December 2016, p. 1–14, 2016b.

SARACEVIC, T. Relevance: A Review of the Literature and a Framework for Thinking on the Notion in information Science. Part II: Nature and Manifestations of Relevance. Journal of the American Society for Information Science and Technology, v. 58, n. 13, p. 1915–1933, 2007.

SCIFORCE. NLP vs. NLU: from Understanding a Language to Its ProcessingSciforce Blog, 2019. Disponível em: <https://medium.com/sciforce/>.

SHAPIRO, I. Why democracies need a functional definition of journalism now more than ever. Journalism Studies, v. 15, n. 5, p. 555–565, 2014.

SILVA, J. R.; LIMA JUNIOR, W. T. From Licklider to cognitive service systems. Brazilian Journal of Technology, Communication, and Cognitive Science, v. 5, n. 1, p. 13, 2017.

SINGH, S. Natural Language Processing for Information Extraction, 2018.

SPENCE, P. R. Searching for questions, original thoughts, or advancing theory: Human-machine communication. Computers in Human Behavior, v. 90, p. 285–287, 2019.

SPERBER, D.; WILSON, D. Relevance: Communication and Cognition. Second Edi ed. Cambridge, MA, USA: Blackwell, 1995.

TAYLOR, J. G. Cognitive computation. Cognitive Computation, v. 1, n. 1, p. 4–16, 2009.

VERNON, D. Artificial Cognitive Systems: a primer. Cambridge, Massachusetts: MIT Press, 2014.

Downloads

Publicado

2024-08-08

Edição

Seção

Núcleo Temático