Epistemic paradoxes in the informational approaches to thermical physics

Authors

  • Javier Anta Universidad de Barcelona

DOI:

https://doi.org/10.5007/1808-1711.2020v24n3p477

Keywords:

Information Physics, Jaynes, conceptual paradoxes

Abstract

In this paper I aim to assess the conceptual and interpretative basis of the ‘infothermal paradox’ underlying informational approaches to thermal physics (particularly the work of Jaynes [1957] and Brillouin [1962]), claiming that information both increases and decreases when observing a system approaching thermal equilibrium. I defend that, even when different concepts and types of information are distinguished, the paradox persist because of a robust connection (epistemic, informational and theoretical) between the information-increasing and the information-decreasing side of this thesis. Finally, I will conclude by arguing that the info-thermal paradox properly manifests deep conceptual-interpretative inconsistencies underlying information-centric thermal physics.

Author Biography

Javier Anta, Universidad de Barcelona

Universidad de Barcelona – Logos , SPAIN

References

Albert, D. Z. (2000) Time and Chance. Cambridge, Mass.: Harvard University Press.

Ben-Naim, A. (2008) A Farewell to Entropy. Statistical Thermodynamics Based on Information. World Scientific.

Bennett, C. H. (1982) The Thermodynamics of Computation — a Review, International Journal of Theoretical Physics 21, 905—940. Reprinted in Leff and Rex (1990), pp. 213—248.

Boltzmann, L. (1894). On the application of the determinantal relation to the kinetic theory of gases. Reprinted in Boltzmann 1909, Vol. III, pp. 520–5.

Brillouin, L. (1951) Maxwell’s Demon Cannot Operate: Information and Entropy. I, Journal of Applied Physics 22, 334—337. Reprinted in Leff and Rex (1990), pp. 134—137. ‘Maxwell’s Demon Cannot Operate: Information and Entropy. II’, Journal of Applied Physics 22, 338—343.

Brillouin, L. (1953) The Negentropy Principle of Information, Journal of Applied Physics 24, 1152—1163.

Brillouin, L. (1962) Science and Information Theory, New York: Academic Press.

Callender, C. (1999) Reducing thermodynamics to statistical mechanics: The case of entropy. Journal of Philosophy 96 (7): 348-373.

Davies, P & Gregersen, N. H. (2010) Information and the Nature of Reality. From Physics to Metaphysics. Cambridge: Cambridge University Press.

Denbigh, K. G. (1981) How Subjective is Entropy? Chemistry in Britain 17, 168—185. Reprinted in Leff and Rex (1990), pp. 109—115.

Denbigh, K. G. & Denbigh, J. S. (1985) Entropy in Relation to Incomplete Knowledge. Cambridge: Cambridge University Press.

Earman, J. & Norton, J. (1998) Exorcist XIV: the wrath of Maxwell's demon. Part I. From Maxwell to Szilard. Studies in History and Philosophy of Modern Physics 29 (4):435-471.

Earman, J. (1999) Exorcist XIV: the wrath of Maxwell’s Demon. Part II. From Szilard to Landauer and beyond. Studies in History and Philosophy of Modern Physics 30(1), pp. 1–40.

Frigg, R. (2004) In what sense is the Kolmogorov–Sinai entropy a measure for chaotic behaviour? Bridging the gap between dynamical systems theory and communication theory. British Journal for the Philosophy of Science 55, 411–34

Frigg, R. & Werndl, C. (2011) Entropy - A Guide for the Perplexed. In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford University Press. pp. 115-142.

Gibbs, J.W. (1902) Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics. New Haven, Conn.: Yale University Press. Reprinted Mineola, N.Y.: Dover, 1960, and Woodbridge, Conn.: Ox Bow Press, 1981.

Hartley, R. (1928) Transmission of information. Bell System Technical Journal 7, 535–63.

Hilgevoord, Jan & Uffink, Jos (1991). Uncertainty in prediction and in inference. Foundations of Physics 21 (3):323-341.

Jaynes, E. T (1957a) Information theory and statistical mechanics, Phys. Rev. 106, pp.620-630.

Jaynes, E. T (1957b) Information theory and statistical mechanics. II, Phys. Rev. 108, pp.171-190.

Landauer, R. (1961) Irreversibility and Heat Generation in the Computing Process, IBM Journal of Research and Development 5, 183—91. Reprinted in Leff and Rex (1990), pp. 188—196.

Landauer, R. (1998) ‘Information is Inevitably Physical’, submitted to Feynman Lectures on Computation, vol. 2, edited by A.J.G. Hey (Addison Wesley, Reading).

Leff, H. S. & Rex, A. F. (1990) Maxwell’s Demon: Entropy, Information, Computing. Princeton: Princeton University Press.

Leff, H. S. (2003) Maxwell's Demon 2: Entropy, Classical and Quantum Information, Computing, Philadelphia, Pennsylvania: Institute of Physics Publishing.

Lewis, G. N. (1930) The symmetry of time in physics, Science 71, pp.569-577.

Lloyd, S. (2006). Programming the Universe: A Quantum Computer Scientist Takes On the Cosmos, Knopf.

Maxwell, J. C. (1867) Letter to P.G. Tait, 11 December 1867. Life and Scientific Work of Peter Guthrie Tait, C.G.Knott (author), Cambridge: Cambridge University Press, 1911, pp. 213–215.

Maxwell, J. C. (1952) Scientific Papers of James Clark Maxwell, edited by W. D. Niven, New York: Dover.

Norton, J. (2005) Eaters of the lotus: Landauer's principle and the return of Maxwell's demon. Studies in the History and Philosophy of Modern Physics, 36: pp. 375–411.

Parker, D. (2011) Information-Theoretic Statistical Mechanics without Landauer's Principle. British Journal for the Philosophy of Science 62 (4):831-856.

Rodd, P. (1964) Some Comments on Entropy and Information, American Journal of Physics 32, 333—335. Reprinted in Leff and Rex (1990), pp. 145—147.

Rothstein, J. (1952) Information and Thermodynamics, Physics Review, 85: 135.

Seife, C. (2007) Decoding the Universe: How the New Science of Information is Explaining Everything in the Cosmos from our Brains to Black Holes. Ed Penguin Group.

Schrödinger, E. (2004) What is Life? (11th reprinting ed.). Cambridge: Canto.

Shannon, C. E. (1948) A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–56.

Shannon, C.E. & Weaver, W. (1949) The Mathematical Theory of Communication. Urbana, Ill., Chicago, Ill. & London: University of Illinois Press.

Sklar, L. (1993) Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics, Cambridge: Cambridge University Press.

Stonier, T. (1990) Information And The Internal Structure Of The Universe, Springer-Verlag.

Szilard, L. (1929) On the Decrease of Entropy in a Thermodynamic System by the Intervention of Intelligent Beings’, in The Collected Works of Leo Szilard: Scientific Papers (MIT Press, 1972), pp. 120—129. Reprinted in Leff and Rex (1990), pp. 124—133.

Szilard, L. (1978) The Collected Works of Leo Szilard; Scientific Papers, Boston, MA: MIT Press.

Timpson, C. G. (2013) Quantum Information Theory and the Foundations of Quantum Mechanics. Oxford University Press.

Thims, L. (2012) Thermodynamics  Information Theory. Journal of Human Thermodynamics, 8(1) pp. 1-120.

Thomson, W. (1853) On the Dynamical Theory of Heat, with numerical results deduced from Mr. Joule’s equivalent of a Thermal Unit, and M. Regnault’s Observations on Steam, Philosophical Magazine, Ser. 4, VI, pp. 8-21.

Tribus, M. & McIrvine, E. C. (1971) Energy and information, Sci. Am. 225, pp.179-188.

Vedral, V. (2010) Decoding Reality: The Universe as Quantum Information. Oxford University Press.

Von Helmholtz, H. (1882) Wissenschaftliche Abhandlungen, Three volumes: second volume 1883, third volume 1895, Leipzig: Johann Ambrosius Barth.

Von Neumann, J. (1948) "The general and logical theory of automata," in Cerebral Mechanisms in Behavior: The Hixon Symposium, Jeffress, L.A., 1951, pp. 1–31.

Von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, published originally in German in 1932), Ch. V.

Wiener, N. (1948) Cybernetics: Or Control and Communication in the Animal and the Machine. Paris, (Hermann & Cie) & Cambridge: MIT Press.

Published

2020-12-15

Issue

Section

Articles