Two Objections to the Selfish Gene Theory


  • Julián Bohórquez Carvajal Pontificia Universidad Javeriana
  • Reinaldo Bernal Velásquez Pontificia Universidad Javeriana



selfish gene theory, unit of selection, genetic replicators, Richard Dawkins, epigenetics


We advance two objections to the selfish gene theory formulated by Richard Dawkins, which states that natural selection operates on genetic replicators. These objections target three of the essential features of the theory. The first feature is the exclusivity that the theory ascribes to genetic replicators as objects of natural selection. We call it “the exclusivity clause”. The second and third features correspond to two criteria that genetic replicators must satisfy for Dawkins’ theory to hold. We call them “the stability criterion” and “the fidelity criterion”. The first objection we advance is that, given the findings of transgenerational epigenetics, genetic replicators do not appear to satisfy the exclusivity clause and some of them do not seem to meet the stability criterion. The second objection is that the existence of the molecular phenomena known as alternative splicing and trans-splicing seems to entail that many genetic replicators do not satisfy neither the stability criterion nor the fidelity criterion.


Anway, M.; Leathers, C.; Skinner, M.K. 2006. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 147(12): 1466-1469.

Barrales, R. & Ibeas, J.I. 2008. Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae. Genetics 178(1): 145-156.

Benabdellah, K.; González-Rey, E.; González, A. 2007. Alternative trans-splicing of the Trypanosoma cruzi LYT1 gene transcript results in compartmental and functional switch for the encoded protein. Molecular Microbiology 65(6): 1559-1567.

Bohórquez-Carvajal, J.D. & Bernal-Velásquez, R.J. 2022. El estancamiento de la controversia sobre el seleccionismo génico. Ideas y Valores 71(8): 66-88.

Celotto, A.M. & Graveley, B.R. 2001. Alternative Splicing of the Drosophila Dscam Pre-mRNA Is Both Temporally and Spatially Regulated. Genetics 159(2): 599-608.

Chong, S. & Whitelaw, E. 2004. Epigenetic germline inheritance. Current Opinion in Genetics & Development 14 (6): 692-696.

Darwin, C. 2010[1859]. El Origen de las especies. Trad. Aníbal Froufe. Madrid: Edaf.

Darwin, C. 1981[1871]. The Descent of Man, and Selection in Relation to Sex. Princeton: Princeton University Press.

Davis, R. E. 1996. Spliced leader RNA trans-splicing in metazoa. Parasitology Today 12 (1): 33-40.

Davis, R. E.; Hardwick, C; Tavernier, P; Hodgson, S.; Singh, H. 1995. RNA trans-splicing in flatworms. Analysis of trans-spliced mRNAs and genes in the human parasite, Schistosoma mansoni. Journal of Biology and Chemistry 270 (37): 21813–21819.

Dawkins, R. 2016. El darwinismo universal. In: M. A. Bedau & C. E. Cleland (ed.), La ciencia de la vida, p.731-758. México: Fondo de Cultura Económica.

Dawkins, R. 2017. El fenotipo extendido. El largo alcance del gen. Trad. Pedro Pacheco González. Madrid: Capitán Swing.

Dawkins, R. 1986. El relojero ciego. Trad. Manuel Arroyo Fernández. Barcelona: Labor.

Dawkins, R. 1976. The Selfish Gene. Oxford: Oxford University Press.

De la Peña, C. & Loyola, V.M. 2017. De la genética a la epigenética. La herencia que no está en los genes. México: Fondo de Cultura Económica.

Diéguez, A. 2012. La vida bajo escrutinio. Una introducción a la filosofía de la biología. Barcelona: Biblioteca Buridán.

Dobzhansky, T. 1951. Genetics and the Origin of Species. New York: Columbia University Press.

Dupré, J. 2006. El legado de Darwin. Qué significa hoy la evolución. Trad. Mirta Rosenberg. Buenos Aires: Katz.

Flavell, R. & Jeffreys, A. 1977. The Rabbit  Globin Gene Contains a Large Insert in the Coding Sequence. Cell 12(4): 1097-1108.

Flouriot G.; Brand, H.; Seraphin, B.; Gannon, F. 2002. Natural trans-spliced mRNAs are generated from the human estrogen receptor-alpha (hER alpha) gene. Journal of Biology and Chemistry 277(29): 26244-26251.

Francis, R. 2011. Epigenetics. How Environment Shapes Our Genes. London: Norton & Company.

Gould, S.J. 2006. El Pulgar del Panda. Trad. Antonio Resines. Barcelona: Crítica.

Gould, S. J. 1977. Caring groups and selfish genes. Natural History 861(12): 20-24.

Gould, S.J. & Eldredge, N. 1977. Punctuated Equilibria: The Tempo and Mode of Evolution Revisited. Paleobiology 3(2): 115-51.

Greer, E.; Maures, T.; Ucar, D; et al. 2011. Transgenerational Epigenetic Inheritance of Longevity in C. elegans. Nature 479(7373): 365-371.

Griffiths, P. & Neumann-Held, E. 1999. The many faces of the gene. BioScience 49 (8): 646-662.

Harris, R.; Zhou, J.; Shi, M.; et. al. 2001. Overexpression of agouti protein and stress responsiveness in mice. Physiology & Behavior 73(4): 599-608.

Horiuchi, T. & Aigaki, T. 2006. Alternative trans-splicing: a novel mode of pre-mRNA processing. Biology of the Cell 98(2): 135-140.

Horiuchi, T.; Giniger, E.; Aigaki1, T. 2003. Alternative trans-splicing of constant and variable exons of a Drosophila axon guidance gene, lola. Genes & Development 17(20): 2496-2501.

Ingram, C.J.E.; Mulcare, C.A.; Itan, Y; et al. 2009. Lactose digestion and the evolutionary genetics of lactase persistence. Human Genetics 124(6): 579-591.

Jablonka, E. & Lamb, M.J. 1995. Epigenetic Inheritance and Evolution. The Lamarckian Dimension. Oxford: Oxford University Press.

Jablonka, E. & Lamb, M.J. 2014. Evolution in Four Dimentions. Genetic, Epigenetic, Behavioral and symbolic Variation in the History of Life. Revised edition. Cambridge: MIT Press.

Jablonka, E. & Raz, G. 2009. Trasngenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. Quarterly Review of Biology 84 (2): 131-176.

Jiang, W. & Cheng, L. 2021. Alternative splicing: Human disease and quantitative analysis from high-throughput sequencing. Computational and Structural Biotechnology Journal 19: 183-195.

Kakuk, P. 2008. Gene Concepts and Genetics: Beyond Exceptionalism. Science and Engineering Ethics 14(3): 357-375.

Krebs, J.; Goldstein, E.; Kilpatrick, S. 2018a. Lewin`s Genes XII. Boston: Jones & Bartlett.

Krebs, J.; Goldstein, E.; Kilpatrick, S. 2018b. RNA Splicing and Processing. In: E. Goldstein; J. Krebs; S. Kilpatrick (eds.), Lewin’s Genes XII, p. 503-542. Boston: Jones & Bartlett.

Lei, Q.; Li, C.; Zuo, Z.; Huang, C.; 2016. Evolutionary Insights into RNA trans-Splicing in Vertebrates. Genome, Biology and Evolution 8(3): 562–577.

Loon, S. & Henikoff, S. 2007. Germline histone dynamics and epigenetics. Current Opinion in Cell Biology 19(3): 257 - 265.

Mayr, E. 1988. Toward a New Philosophy of Biology: Observations of an Evolutionist. Cambridge, MA: Harvard University Press.

Mukherjee, S. 2017. El gen. Una historia personal. Trad. Joaquín Chamorro Mielke. Barcelona: Penguin Random House.

Okasha, S. 2006. The Levels of Selection Debate: Philosophical issues. Philosophy Compass 1 (1): 1-12.

Portin, P. 2009. The elusive concept of the gene. Hereditas 146(3): 112-117.

Rangwala, S.; Rangasamy, E.; Vanier, C; et. al. 2006. Meiotically Stable Natural Epialleles of Sadhu, a Novel Arabidopsis Retroposon. PLoS Genetics 2(3): 270-281.

Roseboom, T.; van der Meulen, J.; Ravelli, A; et. al. 2001. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Molecular and Cellular Endocrinology 185(1-2): 93-98.

Sapienza, C. 2010. Selection Does Operate Primarily on Genes. In Defense of the Gene as the Unit of Selection. In: F. Ayala & R. Arp (ed.), Contemporary Debates in Philosophy of Biology, p. 127-141. New Jersey: Wiley-Blackwell.

Senaldi, L. & Smith-Raska, M. 2020. Evidence for germline non-genetic inheritance of human phenotypes and diseases. Clinical Epigenetics 12(136): 1-12.

Sharma, A. 2014. Bioinformatic analysis revealing association of exosomal mRNAs and proteins in epigenetic inheritance. Journal of Theoretical Biology 357: 143-149.

Siegfried, E. 2018. Genes and Chromosomes. In: E. Goldstein; J. Krebs; S. Kilpatrick (ed.), Lewin’s Genes XII, p. 2-226. Boston: Jones & Bartlett.

Sober, E. 1993. The Nature of Selection. Chicago: The University of Chicago Press.

Sober, E. & Lewontin, R. 1982. Artifact, cause, and genic selectionism. Philosophy of Science 49(2983): 157-180.

Sorek, R.; Shamir, R.; Ast, G. 2004. How prevalent is functional alternative splicing in the human genome? Trends in Genetics 20(2): 68-71.

Tollefsbol, T. 2018. Epigenetics I. In: E. Goldstein; J. Krebs; S. Kilpatrick (ed.), Lewin’s Genes XII, p. 731-748. Boston: Jones & Bartlett.

Van Cauwenbergh, O.; Di Serafino, A.; Tytgat, J.; et al. 2020. Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: a systematic review on research in mammals. Clinical Epigenetics 12(65): 1-23.

Williams, G. C. 1966. Adaptation and Natural Selection. A Critique of Some Current Evolutionary Thought. New Jersey: Princeton University Press.

Wilson, E. 2012. La conquista social de la tierra. Trad. Joandomènec Ros. Barcelona: Random House Mondadori.

Wynne-Edwards, V.C. 1962. Animal Dispersion in Relation to Social Behaviour. Edimburgo: Oliver and Boyd.