Towards a Consilient Theory of Scientific Representation

Authors

  • Maribel Barroso Universidad Alberto Hurtado

DOI:

https://doi.org/10.5007/1808-1711.2023.e86123

Keywords:

Scientific Representation, Models, Scientific Practice, Induction, William Whewell

Abstract

In this article, the inductive philosophy of science of the Victorian philosopher William Whewell is suggested as an appropriate approach to build a consilient notion of scientific representation. After a brief overview of the background that makes a notion of representation necessary in the field of philosophy of science, the description of what has been called the problem of scientific representation is exposed. It is then argued that the above is an unwieldy characterization of the problem that needs to be deflated in favor of a narrower profile of the problem, to finally propose that William Whewell's idiosyncratic notion of induction can be considered to develop a notion of scientific representation that makes the semanticist and pragmatist accounts of representation in science consilient.

References

Balzer, W.; Moulines C. U.; Sneed, J. D. 2000. Structuralist Knowledge Representation: Paradigmatic Examples. The Netherlands: Rodopi B.V.

Balzer, W.; Moulines C. U.; Sneed, J. 2012 [1987]. Una arquitectónica para la ciencia: el programa estructuralista. 1era Edición. Trad. P. Lorenzano [An arquitectonic for Science]. Bernal: Univ. Nacional de Quilmes Ed.

Bueno, O. 1997. Empirical Adequacy: A Partial Structures Approach. Studies in History and Philosophy of Science Part A 28(4): 585-610.

Bueno, O. 1999. Empiricism, Conservativeness, and Quasi-Truth. Philosophy of Science 66 (September): 474-85.

Bueno, O.; French, S.; Ladyman J. 2002. On Representing the Relationship between the Mathematical and the Empirical. Philosophy of Science 69(3): 452-73.

Bueno, O. y French, S. 2011. How Theories Represent. The British Journal for the Philosophy of Science 62(4): 857-94.

Bueno, O. y French, S. 2018. Applying Mathematics. Immersion, Inference, Interpretation. UK: Oxford University Press.

Callender, C. y Cohen J. 2006. There Is No Special Problem About Scientific Representation. Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 1(21): 67-85.

Cartwright, N.; Suárez, M.; Shomar T. 1995. The toolbox of science: Tools for the building of models with a superconductivity example. In: W. E. Herfel; R. Wojcicki; I. Niiniluoto; W. Krajewski (eds.), Theories and Models in Scientific Processes: Proceedings of AFOS ’94. Poznań studies in the philosophy of the sciences and the humanities, 44, 137-49. The Netherlands: Rodopi B.V.

Currie, G. 2016. Models As Fictions, Fictions as Models. The Monist 99(3): 296-310.

Da Costa, N. C. A. & French, S. 1989. Pragmatic Truth and the Logic of Induction. The British Journal for the Philosophy of Science 40(3): 333-56.

Dethier, C. 2018. William Whewell’s Semantic Account of Induction. HOPOS: The Journal of the International Society for the History of Philosophy of Science 8(1): 141-56.

Elgin, C. Z. 2010. Telling Instances. In: R. Frigg & M. Hunter (eds.), Beyond Mimesis and Convention, Boston Studies in the Philosophy of Science, vol. 262, p. 1-17. Dordrecht: Springer Netherlands.

Foster, M. 2004. The debate between Whewell and Mill on the nature of scientific induction. In: D. M. Gabbay; J. Woods; A. Kanamori (eds.), Handbook of the History of Logic, vol. 10, p. 10-93. North Holland: Elsevier.

French, S. & Ladyman J. 1999. Reinflating the Semantic Approach. International Studies in the Philosophy of Science 13(2): 103-21.

Frigg, R. 2010. Fiction and Scientific Representation. In: R. Frigg & M. Hunter (eds.), Beyond Mimesis and Convention, Boston Studies in the Philosophy of Science, vol. 262, p. 97-138. Dordrecht: Springer Netherlands.

Frigg, R. & Nguyen J. 2020. Scientific Representation. In: E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Winter 2021 Edition. https://plato.stanford.edu/archives/win2021/entries/scientific-representation/. Acceso: 10.08.2021.

Frigg, R. & Nguyen J. 2021. Seven Myths About the Fiction View of Models. In: A. Cassini & J. Redmond (eds.), Models and Idealizations in Science. Artifactual and Fictional Approaches, Logic, Epistemology, and the Unity of Science, vol. 50, p.133-157. Switzerland: Springer Nature.

Frisch, M. 2000. (Dis-)Solving the Puzzle of the Arrow of Radiation. The British Journal for the Philosophy of Science 51(3), 381-410.

Frisch, M. 2000. 2005. Inconsistency, asymmetry, and non-locality: a philosophical investigation of classical electrodynamics. New York: Oxford University Press.

Giere, R. 1988. Explaining science: a cognitive approach. Science and its conceptual foundations. Chicago: University of Chicago Press.

Giere, R. 1999. Science without laws. Science and its conceptual foundations. Chicago: University of Chicago Press.

Giere, R. 2006. Scientific Perspectivism. Chicago: University of Chicago Press.

Ibarra, A. 2000. La naturaleza vicarial de las representaciones. En: A. Ibarra y T. Mormann (eds.), Variedades de la representación en la ciencia y la filosofía, p. 23-40. Barcelona: Ariel.

Ibarra, A. & Mormann T. 2000. Una teoría combinatoria de las representaciones científicas. Crítica, Revista Hispanoamericana de Filosofía 32(95): 3-46.

Ladyman, J.; Bueno, O.; Suárez, M.; van Fraassen, B. 2011. Scientific Representation: A Long Journey from Pragmatics to Pragmatics. Metascience 20(3), 417–442.

Lalande, A. 1944 [1929]. Las teorías de la inducción y de la experimentación. Trad. J. F. Mora [Les théories de l’induction et de l’experimentation]. Buenos Aires: Losada.

Laudan, L. 1971. William Whewell on the Consilience of Inductions. Monist 55(3): 368-91.

McKinsey, J.; Sugar, A.; Suppes, P. 1953. Axiomatic Foundations of Classical Particle Mechanics. Indiana University Mathematics Journal 2(2): 253-72.

McKinsey, J. & Suppes, P. 1953. Transformations of Systems of Classical Particle Mechanics. Indiana University Mathematics Journal 2(2): 273-89.

Mitchell, S. 2019. Perspectives, Representation, and Integration. In: M. Massimi & C. D. McCoy (eds.), Understanding Perspectivism: Scientific Challenges and Methodological Prospects, p. 178-93. New York: Routledge.

Mitchell, S. 2020. Through the Fractured Looking Glass. Philosophy of Science 87(5): 771-92.

Morgan, M. & Morrison, M. 1999. Models as Mediators: Perspectives on Natural and Social Science. United Kingdom: Cambridge University Press.

Moulines, C. U. 2006. El estructuralismo metateórico. Universitas Philosophica 46: 13-25.

Salis, F. 2021. Bridging the Gap: The Artifactual View Meets the Fiction View of Models. In: A. Cassini & J. Redmond (ed.), Models and Idealizations in Science. Artifactual and Fictional Approaches, Logic, Epistemology, and the Unity of Science, vol. 50, p.159-177. Switzerland: Springer Nature.

Snyder, L. 2008. “The Whole Box of Tools”: William Whewell and the Logic of Induction. In: D. M. Gabbay & J. Woods (eds.), Handbook of the History of Logic, vol. 4, p. 163-228. North Holland: Elsevier.

Snyder, L. 2012. Experience and necessity: The Mill-Whewell debate. In: J. R. Brown (ed.), Philosophy of Science: The Key Thinkers, vol. 10. London: Bloomsbury Publishing.

Soler, L.; Trizio E.; Nickles, T.; Wimsatt W. 2012. Characterizing the Robustness of Science. Boston Studies in the Philosophy of Science, vol. 292. Dordrecht: Springer Netherlands.

Suárez, M. 2003. Scientific Representation: Against Similarity and Isomorphism. International Studies in the Philosophy of Science 17(3): 225-44.

Suárez, M. 2004. An Inferential Conception of Scientific Representation. Philosophy of Science 71(5): 767-79.

Suárez, M. & Cartwright, N. 2008. Theories: Tools versus Models. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39(1): 62-81.

Tarski, A. 1944. The Semantic Conception of Truth: and the Foundations of Semantics. Philosophy and Phenomenological Research 4(3): 341.

Van Fraassen, B. 1996 [1980]. La Imagen científica. Trad. S. Martínez. [The Scientific Image]. México: Paidós.

Van Fraassen, B. 2006. Representation: The Problem for Structuralism. Philosophy of Science 73(5): 536-47.

Van Fraassen, B. 2008. Scientific Representation. England: Oxford University Press.

Van Fraassen, B. 2014. The Criterion of Empirical Grounding in the Sciences. In: W. J. González (ed.), Bas van Fraassen’s Approach to Representation and Models in Science, vol. 368, p. 79-100. Dordrecht: Springer Netherlands.

Watson, R. A. 1995. Representational Ideas from Plato to Patricia Churchland. Dordrecht: Springer Netherlands.

Wettersten, J. 1994. William Whewell: Problems of Induction vs. Problems of Rationality. The British Journal for the Philosophy of Science 45(2): 716-42.

Whewell, W. 1837a. History of the Inductive Sciences, Cambridge Library Collection, vol. 1. Cambridge: Cambridge University Press.

Whewell, W. 1837b. History of the Inductive Sciences. Cambridge Library Collection, vol. 2. Cambridge: Cambridge University Press.

Whewell, W. 1840a. The Philosophy of the Inductive Science, Founded Upon Their History, vol. 1. London: John W. Parker West Strand.

Whewell, W. 1840b. The Philosophy of the Inductive Science, Founded Upon Their History, vol. 2. London: John W. Parker, West Strand.

Whewell, W. 1860. On the Philosophy of Discovery, Chapters Historical and Critical Including the Completion of the Third Edition of the Philosophy of the Inductive Sciences. Third Edition. London: John W. Parker West Strand.

Whewell, W. 1937. History of the Inductive Sciences. Cambridge Library Collection Philosophy, vol. 3, Cambridge: Cambridge University Press.

Whewell, W. 1958. Novum Organon Renovatum. Third Edition. London: John W. Parker West Strand.

Winther, R. G. 2015. The Structure of Scientific Theories. In: E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Winter 2016 Edition. https://plato.stanford.edu/archives/win2016/entries/structure-scientific-theories/. Acceso: 05.10.2021.

Published

2023-10-06

Issue

Section

Articles