Complex Networks, Structural Explanations, and the Role of Values in Experimental Linguistics

Authors

DOI:

https://doi.org/10.5007/1808-1711.2024.e92531

Keywords:

Complex Networks, Structural Explanation, Experimental Linguistics, Cognitive Values

Abstract

First, a brief state of the art on the role of values in science is presented. The main points of the critique of the ideal of a free-value science are depicted (Sec. 2), followed by a framework of four phases in the development of scientific activity that allows us to better assess the influence of values in science. The basic thesis of the present text criticizes the conception close to Heather Douglas’ thesis, according to which values, including cognitive values, can only play an indirect role in science (Sec. 3). In order to show that, at certain phases of science, the explanatory power (a cognitive value) can play a direct role, we propose an examination of structural explanation, as distinguished from mechanistic explanation, in a case of experimental linguistics related to language acquisition (Sec. 4). The conclusion is presented in the last section.

Author Biography

Juan Bautista Bengoetxea, University of the Basque Country

Juan B. Bengoetxea es Doctor en Filosofía (Lógica y Filosofía de la Ciencia) por la Universidad del País Vasco. Actualmente es profesor del Área de Lógica y Filosofía de la Ciencia del Dpto. de Filosofía de la UIB. Imparte docencia de Filosofía del Lenguaje, Argumentación Lógica y Filosofía de la Tecnología.

Ha investigado e impartido docencia en varias universidades internacionales y españolas, entre ellas Colorado School of Mines (Estados Unidos), The University of Colorado at Boulder (Estados Unidos), The London School of Economics (Reino Unido), Universidad del País Vasco (España), Universidad de Valladolid (España), University of Twente (Países Bajos) y Universidad de la República (Uruguay).

References

Abbuhl, R.; Gass, S.; Mackey, A. 2013. Experimental research design. In R. Podesva; D. Sharma (ed.), Research Methods in Linguistics, p.116-134. Cambridge: Cambridge University Press.

Alleva, K.; Díez, J.; Federico, L. 2017. Models, theory structure and mechanisms in biochemistry: The case of allosterism. Studies in History and Philosophy of Biology and Biomedical Sciences 63: 1–14.

Antony, L. 1993. Quine as feminist: The radical import of naturalized epistemology. In L.M. Antony; C.E. Witt. (ed.), A Mind of One’s Own: Feminist Essays on Reason and Objectivity, p.110–153. Boulder: Westview.

Bar-Yam, Y. 1997. Dynamics of Complex Systems. Reading, MA: Addison-Wesley.

Barabási, A.-L. 2002. Linked: The New Science of Networks. Cambridge, MA: Perseus.

Barceló-Coblijn, L.; Corominas-Murtra, B.; Gomila, A. 2012. Syntactic trees and small-world networks: syntactic development as a dynamical process. Adaptive Behavior 20(6): 427-442.

Barceló-Coblijn, L.; Duguine, M.; Irurtzun, A. 2019. The Emergence of Hubs in Complex Syntactic Networks and the DP Hypothesis: The Relevance of a Linguistic Analysis. In À. Massip; G. Bel-Enguix; A. Bastardas-Boada (ed.), Complexity Applications in Language and Communication Sciences, p.273-288. London: Springer.

Barceló-Coblijn, L.; Serna, D.; Isaza, G.; Castillo, L.F.; Bedia, M. 2017. Netlang: A software for the linguistic analysis of corpora by means of complex networks. PlosOne 12(8): 1-15.

Barker, G., Kitcher, P. 2014. Philosophy of Science: A New Introduction. Oxford: Oxford University Press.

Bechtel, W.; Richardson, R. C. 1993. Discovering complexity: Decomposition and localization as strategies in scientific research. Princeton, NJ: Princeton University Press.

Bengoetxea, J.B. 2024. Imparcialidad y demarcación de valores en la actividad científica. Revista Iberoamericana de Ciencia y Tecnología 19(55): 107-125.

Bengoetxea, J.B.; Todt, O. 2021. Decision-Making in the Nutrition Sciences: A Critical Analysis of Scientific Evidence for Assessing Health Claims. Manuscrito 44(3): 42-69.

Betz, G. 2013. In defence of the value free ideal. European Journal for Philosophy of Science 3: 207-220.

Brigandt, I. 2015. Social values influence the adequacy conditions of scientific theories: beyond inductive risk. Canadian Journal of Philosophy 45: 326-356. https://doi.org/10.1080/00455091.2015.1079004.

Brigandt, J.; Green, S.; O’Malley, M. A. 2017. Systems biology and mechanistic explanation. In S. Glennan; P. Illari (ed.), The Routledge handbook of mechanisms and mechanical philosophy, p.362-374. London: Routledge.

Brown, M.J. 2013. Values in Science beyond Underdetermination and Inductive Risk. Philosophy of Science 80(5): 829-839.

Bueno, O. 2011. Partial Truth and Visual Evidence. Principia 15(2): 249-270.

Cartwright, N. 2022. A Philosopher Looks at Science. Cambridge: Cambridge University Press.

Cartwright, N.; Hardie, J. 2012. Evidence-based policy: a practical guide to doing it better. New York: Oxford University Press.

Cartwright, N.; Hardie, J.; Montuschi, E.; Soleiman, M.; Thresher, A.C. (ed.). 2022. The Tangle of Science: Reliability Beyond Method, Rigour, and Objectivity. Oxford: Oxford University Press.

Chomsky, N.; Miller, G.A. 1963. Introduction to the formal analysis of natural languages. In L. Duncan; R.R. Bush; E. Galanter, E. (ed.), Handbook of mathematical psychology, p.269-321. New York: John Wiley.

Corominas-Murtra, B. 2007. Network statistics on early English Syntax: Structural criteria. arXiv e-print. https://arxiv.org/abs/0704.3708. Access: 12/12/2022.

Corominas-Murtra, B.; Valverde, S.; Solé, R.V. 2009. The ontogeny of scale-free syntax networks: Phase transitions in early language acquisition. Advances in Complex Systems (ACS) 12: 371-392.

Coyte, K.Z.; Schluter, J.; Foster, K.R. 2015. The ecology of the microbiome: Networks, competition, and stability. Science 350(6261): 663-666.

Crespo, R.F. 2019. Liberal Naturalism and Non-epistemic Values. Foundations of Science 24: 247-273.

Deulofeu, R.; Suárez, J.; Pérez-Cervera, A. 2021. Explaining the behaviour of random ecological networks: The stability of the microbiome as a case of integrative pluralism. Synthese 198(3): 2003-2025.

Diekmann, S.; Peterson, M. 2013. The Role of Non-Epistemic Values in Engineering Models. Sci. Eng. Ethics 19: 207-218.

Díez, J. A.; Khalifa, K.; Leuridan, B. 2013. General theories of explanation: Buyers beware. Synthese 190: 379–396.

Douglas, H.E. 2000. Inductive Risk and Values in Science. Philosophy of Science 67(4): 559-579.

Douglas, H.E. 2009a. Reintroducing Prediction in Explanation. Philosophy of Science 79: 444-463.

Douglas, H.E. 2009b. Science, Policy, and the Value-Free Ideal. Pittsburgh, PA: University of Pittsburgh Press.

Douglas, H.E. 2010. Engagement for Progress: Applied Philosophy of Science in Context. Synthese 177(3): 317-335.

Douglas, H.E. 2014. Values in Social Science. In N. Cartwright; E. Montuschi (ed.), Philosophy of Social Science: A New Introduction, p.162-182. Oxford: Oxford University Press.

Dupré, J. 2007. Fact and value. In H. Kincaid; J. Dupré; A. Wylie (ed.), Value-Free Science: Ideals or Illusions, p.27-41. Oxford: Oxford University Press.

Elliott, K.C.; Richards, T. (ed.). 2017. Exploring Inductive Risk: Case Studies of Values in Science. Oxford: Oxford University Press.

Elliott, K.C.; Steel, D. (ed.). 2017. Current Controversies in Values and Science. New York: Routledge.

Friedman, M. 1974. Explanation and scientific understanding. Journal of Philosophy 71: 5-19.

Glennan, S. 1996. Mechanisms and the nature of causation. Erkenntnis 44(1): 49–71.

González, W.J. 2013. Value Ladenness and the Value-Free Ideal in Scientific Research. In C. Luetge (ed.), Handbook of the Philosophical Foundations of Business Ethics, p.1503-1521. Dordrecht: Springer.

Green, S.; Jones, N. 2016. Constraint-based reasoning for search and explanation: Strategies for understanding variation and patterns in biology. Dialectica 70(3): 343-374.

Gries, S.T.; Newman, J. 2013. Creating and using corpora. In R.J. Podesva; D. Sharma (ed.), Research Methods in Linguistics, p.257-287. Cambridge: Cambridge University Press.

Haack, S. 1998. Science as Social? —Yes and No. In Manifesto of a Passionate Moderate, p.104-122. Chicago: The University of Chicago Press.

Haack, S. 2016. Serious Philosophy. Spazio Filosofico 18: 395-407.

Hacking, I. 1983. Representing and Intervening: Introductory Topics in the Philosophy of Natural Science. Cambridge: Cambridge University Press.

Harding, S. 1986. The Science Question in Feminism. New York: Cornell University Press.

Hempel, C. 1965. Aspects of scientific explanation and other essays in the philosophy of science. New York: Free Press.

Hooker, C. 2011. Introduction to Philosophy of Complex Systems. In C. Hooker (ed.), Philosophy of Complex Systems, p.841-909. Amsterdam: Elsevier.

Huneman, P. 2010. Topological explanations and robustness in biological sciences. Synthese 177: 213 245.

Huneman, P. 2018. Outlines of a theory of structural explanation. Philosophical Studies 175(3): 665–702.

Intemann, K. 2015. Distinguishing between legitimate and illegitimate values in climate modeling. European Journal for Philosophy of Science 5: 217-232.

Keller, E. F. 2005a. The century beyond the gene. Journal of Biosciences 30: 3–10.

Keller, E. F. 2005b. Revisiting ‘scale-free’ networks. BioEssays 27: 1060–1068.

Kellert, S.H.; Longino, H.E.; Waters, C.K. 2006. Scientific Pluralism. Minneapolis : University of Minnesota Press.

Kincaid, H.; Dupré, J.; Wylie, A. (ed.). 2007. Value-Free Science? Ideals and Illusions. Oxford University Press, Oxford.

Kitcher, P. 1989. Explanatory unification and the causal structure of the world. In P. Kitcher; W. Salmon (ed.), Scientific explanation, p.410–505. Minneapolis: University of Minnesota Press.

Kitcher, P. 2023. What’s the Use of Philosophy? Oxford: Oxford University Press.

Koskinen, I. 2021. Objectivity in contexts: withholding epistemic judgement as a strategy for mitigating collective bias. Synthese 199: 211-225.

Koskinen, I., Rolin, K. 2022. Distinguishing between legitimate and illegitimate roles for values in transdisciplinary research. Studies in History and Philosophy of Science 91: 191-198.

Lacey, H. 1997. The Constitutive Value of Science. Principia 1(1): 3-40.

Lacey, H. 1999. Is Science Value-Free? Values and Scientific Understanding. London: Routledge.

Lacey, H. 2004. Is There a Significant Distinction between Cognitive and Social Values? In P. Machamer; G. Wolters (ed.), Science, Values, and Objectivity, p.24-51. Pittsburgh: University of Pittsburgh Press.

Lacey, H. 2011. A imparcialidade da ciência e as responsabilidades dos cientistas. Scientiæ Studia 9(3): 487-500.

Lacey, H.; Mariconda P.R. 2014. O modelo das interações entre as atividades científicas e os valores. Scientiae Studia 12(4): 643-668.

Landes, J. 2020. The variety of evidence thesis and its independence of degrees of Independence. Synthese 198: 10611-10641.

Laudan, L. 1984. Science and Values: The Aims of Science and Their Role in Scientific Debate. Berkeley: University of California Press.

Longino, H. 1990. Science as Social Knowledge. Cambridge, MA: Princeton University Press.

Longino, H. 1996. Cognitive and Non-Cognitive Values in Science: Rethinking the Dichotomy. In L.H. Nelson; J. Nelson (ed.), Feminism, Science, and The Philosophy of Science, p.39-58. Dordrecht: Kluwer.

Machamer, P.; Darden, L.; Craver, C. 2000. Thinking about mechanisms. Philosophy of Science 67: 1–25.

MacWhinney, B.; Snow, C. 1990. The Child Language Data Exchange System: an update. Journal of Child Language 17(2): 457-472.

Mahner, M. 2022. Naturalismo. Trans. Francisco José Mota Poveda [Naturalismus]. Pamplona: Laetoli.

Martins Dos Reis, C.R., De Patta Pillar, V. 2018. Valores, estratégias de pesquisa e aplicacao do conhecimento: os Campos Sulinos en questao. Principia 22(3): 461-483.

McIntyre, L. 2019. The Scientific Attitude: Defending Science from Denial, Fraud, and Pseudoscience. Cambridge, MA: The MIT Press.

McMullin, E. 1982. Values in Science. In P.D. Asquith; T. Nickles (ed.), PSA: Proceedings of the 1982 Biennial Meeting of the Philosophy of Science Association (Volume Two, Symposia and Invited Papers), p.3–28. East Lansing, MI: Philosophy of Science Association.

McNamara, T. 2006. Validity and values: Inferences and generalizability in language testing. In M. Chalhoub-Deville; C.A. Chapelle; P. Duff (ed.), Inference and Generalizability in Applied Linguistics, p.27-45. Amsterdam: John Benjamins.

Moreno, Á.; Suárez, J. 2020. Plurality of explanatory strategies in biology: mechanisms and networks. In W.J. González (ed.), Methodological Prospects for Scientific Research: From Pragmatism to Pluralism, p.141-165. Cham: Springer.

Ninio, A. 2006. Language and the leaning curve: A new theory of syntactic development. Oxford: Oxford University Press.

Popper, K.R. 1994. The Myth of the Framework. Routledge, London.

Potter, E. 2006. Feminism and Philosophy of Science: An Introduction. London: Routledge.

Pournari, M. 2008. The Distinction Between Epistemic and Non-Epistemic Values in the Natural Sciences. Science & Education 17: 669-676.

Pritchard, D. 2021. Intellectual virtues and the epistemic value of truth. Synthese 198: 5515-5528.

Psillos, S. 2015. Evidence: wanted, alive or dead. Canadian Journal of Philosophy 45: 357-381.

Putnam, H. 2002. The Collapse of the Fact/Value Dichotomy and Other Essays. Cambridge, MA: Harvard University Press.

Radder, H. 2003. Technology and Theory in Experimental Science. In The Philosophy of Scientific Experimentation, p.152-173. Pittsburgh: University of Pittsburgh Press.

Resnik, D.B., Elliott, K.C. 2023. Science, Values, and the New Demarcation Problem. Journal for General Philosophy of Science. [https://doi.org/10.1007/s10838-022-09633-2]

Rezaee, H.S., Bikaraan-Behesht, H. 2023. Value-Free Ideal is an Epistemic Ideal: An Objection to the Argument from Inductive Risk. Principia 21(1): 137-163.

Risjord, M. 2023. Philosophy of Social Science: A Contemporary Introduction, 2nd Edition. New York: Routledge.

Rolin, K.H. 2015. Values in Science: The Case of Scientific Collaboration. Philosophy of Science 82(2): 157-177.

Rudner, R. 1953. The Scientist Qua Scientist Makes Value Judgments. Philosophy of Science 20(1): 1-6.

Salmon, W. 1989. Four Decades of Scientific Explanation. Minneapolis: University of Minnesota Press.

Seoane, L.; Solé, R. 2018. The morphospace of language networks. Scientific Reports 8: 10465.

Shrader-Frechette, K. 1993. Burying Uncertainty: Risk and the Case Against Geological Disposal of Nuclear Waste. Berkeley: University of California Press.

Steel, D. 2010. Epistemic Values and the Argument from Inductive Risk. Philosophy of Science 77: 11 34.

Thurner, S.; Hanel, R.; Klimek, P. 2018. Introduction to the Theory of Complex Systems. Oxford: Oxford University Press.

Tomasello, M. 2003. Constructing a language: A usage-based theory of language acquisition. Cambridge, MA: Harvard University Press.

Van Fraassen, B.C. 1980. The Scientific Image. Oxford: Oxford University Press.

Vilhalemm, R. 2016. Chemistry and the problem of pluralism in science: an analysis concerning philosophical and scientific disagreements. Foundations of Chemistry 18: 91-102.

Wilholt, T. 2009. Bias and values in scientific research. Studies in History and Philosophy of Science 40(1): 92-101.

Zuidema, W.; de Boer. B. 2013. Modelling in the language sciences. In R.J. Podesva; S. Devyani (ed.), Research Methods in Linguistics, p.428-445. Cambridge: Cambridge University Press.

Downloads

Published

2024-12-11

Issue

Section

Articles