The Ontological Burden of Mathematics and Scientific Realism
DOI:
https://doi.org/10.5007/1808-1711.2024.e93783Keywords:
Ontology, Realism, Mathematical Structure, Theoretical RepresentationAbstract
The mathematical representation of nature is so important in the scientific research of the world that some authors have defended the existence of an ontological burden in the mathematical formalism used by scientists. According to this view, the use of a certain formalism would entail an implicit commitment to the type of entities that the populate the material world. This paper will analyze (i) whether mathematics carries an unavoidable ontological burden in its application to physics, and (ii) whether this alleged ontological burden compromises in some way the metaphysical realism on which scientific activity is based. To do this, the applicability of mathematics to the physical world will be taken for granted and, based on the different examples presented throughout the text, it will be found that there are no reasons to hold such assumptions. Therefore, the non-existent ontological implications of mathematical formalism do not pose any threat to realistic metaphysics in any of its modalities, such as structural realism.
References
Alemañ, R. 2011. El desafío de Einstein, vol. I: En busca de la unificación. Moscú: Editorial URSS.
Alonso, M. 1994. La dualidad onda-partícula: ¿Misterio o mito?. Revista Española de Física 8(1): 38-41.
Arezoo I. 2017. A match not made in heaven: on the applicability of mathematics in physics. Synthese 194(12): 4839-4861.
Balaguer, M. 1998. Platonism and Anti-Platonism in Mathematics. New York: Oxford University Press.
Barker, S.; Jago, M. 2018. Material objects and essential bundle theory. Philosophical Studies 175: 2969-2986.
Baron, S. 2024. Mathematical Explanation: A Pythagorean Proposal. British Journal for the Philosophy of Science 75(3): 663-685. DOI: 10.1086/716181.
Barrow, J. 1997. ¿Por qué es el mundo matemático?. Barcelona: Grijalbo.
Benacerraf, P. 1965. What Numbers Could Not Be. The Philosophical Review 74(1): 47-73.
Benacerraf, P. 1973. Mathematical Truth. The Journal of Philosophy 70: 661-679.
Bender, C.; Brody, D.; Müller, M. 2017. Hamiltonian for the Zeros of the Riemann Zeta Function. Phys. Rev. Lett. 118: 130201.
Bergliaffa, S.; Vucetich, H.; Romero. G. 1993. Axiomatic Foundations of Nonrelativistic Quantum Mechanics: A Realistic Approach. Int. J. Theor. Phys. 32(9): 1507.
Bochner, S. 1991. El papel de la matemática en el desarrollo de la ciencia. Madrid: Alianza.
Bourgade, P.; Keating, J. 2012. Quantum Chaos, Random Matrix Theory, and the Riemann ζ-function. Progress in Mathematical Physics 66. DOI: 10.1007/978-3-0348-0697-8_4.
Bunge, M. 1974. Treatise on Basic Philosophy. Vol. 1. Semantics I: Sense and Reference. Dordrecht: Reidel.
Bunge, M. 1977. Treatise on Basic Philosophy. Vol. 3. Ontology I: The Furniture of the World. Dordrecht: Reidel.
Bunge, M. 2006. Chasing Reality: Strife over Realism. Toronto: University of Toronto Press.
Burgess, J.; Rosen, G. 1997. A Subject with No Object. Oxford: Oxford University Press.
Bueno, O. 1997. Empirical Adequacy: A Partial Structures Approach. Studies in History and Philosophy of Science 28: 585-610.
Bueno, O. 1999. What is Structural Empiricism? Scientific Change in an Empiricist Setting. Erkenntnis 50: 59-85.
Bueno, O. 2009. Mathematical Fictionalism. In O. Bueno; Ø. Linnebo (ed.), New Waves in Philosophy of Mathematics, p.59-79. London: Palgrave Macmillan
Bueno, O. 2018. Putnam's indispensability argument revisited, reassessed, revived. Theoria 33(2): 201–218.
Bueno, O.; French, S. 2011. How Theories Represent. British Journal for the Philosophy of Science 62(4): 857–894
Bueno, O.; French, S.; Ladyman, J. 2002. On representing the relationship between the mathematical and the empirical. Philosophy of Science 69(3): 497-518.
Cho, Y.; Maison, D. 1997. Monopole configuration in Weinberg–Salam model. Phys. Lett. B 391: 360-365.
Claggett, M. 1959. Science of Mechanics in the Middle Ages. Madison: University of Wisconsin Press.
Clarke-Doane, J. 2022. Mathematics and Metaphilosophy. Cambridge: Cambridge University Press.
Colyvan, M. 2001a. The Miracle of Applied Mathematics. Synthese 127(3): 265-278.
Colyvan, M. 2001b. The Indispensability of Mathematics. New York: Oxford University Press.
Crombie, A.C. 1990. Science, Optics and Music in Medieval and Early Modern Thought. London: Hambledon & London Ltd.
Dahler, H.S.; Scriven, L.E. 1963. Theory of Structured Continua. Proc. Roy. Soc. Lond. A 275: 505-527.
Darling, R. 1994. Differential Forms and Connections. Cambridge: Cambridge University Press.
Decock, L. 2002. Quine's Weak and Strong Indispensability Argument. Journal for General Philosophy of Science 33(2): 231-250.
DeWitt, B. 2003. The Global Approach to Quantum Field Theory. Vols. I – II. New York: Oxford University Press.
Dirac, P. A. M. 1931. Quantised singularities in the electromagnetic field. Proc. R. Soc. London A 133: 60-72.
Donaldson, S. 1990. Polynomial invariants for smooth four-manifolds. Topology 29: 257-315.
Donaldson, S.; Kronheimer, P. 1990. The geometry of four-manifolds. Oxford: Clarendon Press.
Drukier, A. K.; Nussinov, S. 1982. Monopole pair creation in energetic collisions: is it possible?. Phys. Rev. Lett. 49: 102-105.
Duhem, P. 1988. Le système du monde: Histoire des doctrines cosmologiques de Platon à Copernic. Paris: Hermann.
Field, H. 1980. Science without Numbers. Princeton: Princeton University Press.
Field, H. 1989. Realism, Mathematics, and Modality. Philosophical Topics 16(1): 57-107.
French, S. 1998. A Semantic Perspective on Idealisation in Quantum Mechanics. In N. Shanks (ed.), Idealization VIII: Idealization in Contemporary Physics, p.51-73. Amsterdam: Rodopi.
French, S. 1999. Reinflating the Semantic Approach. International Studies in the Philosophy of Science 13: 99-117.
French, S. 2000. The Reasonable Effectiveness of Mathematics: Partial Structures and the Application of Group Theory to Physics. Synthese 125(1-2): 103-120.
French, S.; Ladyman, J. 1997. Superconductivity and Structures: Revisiting the London Account. Studies in History and Philosophy of Modern Physics 28: 363-393.
French, S.; Ladyman, J. 2003. Remodelling Structural Realism: Quantum Physics and the Metaphysics of Structure. Synthese 136: 31-56.
Friedmann, T.; Hagen, C. 2015. Quantum mechanical derivation of the Wallis formula for π. J. Math. Phys. 56: 112101.
Galileo. 1981 [1623]. El Ensayador. Buenos Aires: Aguilar.
Goldstein, H. 1990. Mecánica clásica. Barcelona: Reverté.
Kasa, I. 2010. On Field’s Epistemological Argument against Platonism. Studia Logica 96(2): 141-47.
Kant, I. 1989 [1786]. Principios metafísicos de la ciencia de la naturaleza. Madrid: Alianza.
Koyré, A. 1966. Études Galiléennes. Paris: Hermann.
Lafrance, J.D. 2015. A bundle of universals theory of material objects. The Philosophical Quarterly 65(259): 202-219.
Leng, M. 2009. Mathematics and Reality. Oxford: Oxford University Press.
Liggins, D. 2008. Quine, Putnam, and the 'Quine–Putnam' Indispensability Argument. Erkenntnis 68(1): 113-127.
Liggins, D. 2010. Epistemological Objections to Platonism. Philosophy Compass 5(1): 67-77.
Lutz, S. 2019. Generalizing empirical adequacy II: partial structures. Synthese 198: 1351-1380.
MacDonnell, J. 2016. The Pythagorean World. Why Mathematics is Unreasonably Effective in Physics. New York: Palgrave Macmillan.
Madrid, C. 2010. Sr. realista estructural, tenemos un problema: La carga ontológica de las matemáticas. Principia 14(2): 201-209.
Malkus, W. V. R. 1951. The interaction of the Dirac magnetic monopole with matter. Phys. Rev. 83: 899-905.
Marquis, J.-P. 1997. Abstract Mathematical Tools and Machines for Mathematics. Philosophia Mathematica 5(3): 250-272.
Marquis, J.-P. 2006. A Path to the Epistemology of Mathematics: Homotopy Theory. In J. Gray; J. Ferreiros (ed.), The Architecture of Modern Mathematics, p.239-260. Oxford: Oxford University Press.
Marquis, J.-P. 2011. Mario Bunge’s Philosophy of Mathematics: An Appraisal. Science & Education 21(10): 1567-1594.
Marquis, J.-P. 2012. Categorical Foundations of Mathematics: or how to provide foundations for abstract mathematics. The Review of Symbolic Logic 6(1): 51-75.
Marquis, J.-P. 2018. Unfolding FOLDS: A Foundational Framework for Abstract Mathematical Concepts. In E. Landry (ed.), Categories for the Working Philosopher, p.136-162. New York: Oxford University Press.
Milton, K.A. 2006. Theoretical and experimental status of magnetic monopoles. Rep. Prog. Phys. 69: 1637-1711.
Molinini, D.; Pataut, F.; Sereni, A. 2016. Indispensability and explanation: an overview and introduction. Synthese 193(2): 317-332.
Noll, W. 1955. Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der statistischen Mechanik. Journal of Rational Mechanics and Analysis 4: 627-646.
Nutting, E. S. 2020. Benacerraf, Field, and the Agreement of Mathematicians. Synthese 197(5): 2095-110.
Pal, P. B. 2011. Dirac, Majorana, and Weyl fermions. American Journal of Physics 79(5): 485-498.
Penrose, R. 2017. Moda, fe y fantasía en la nueva física del universo. Madrid: Debate.
Psillos, S. 1995. Is structural realism the best of both worlds?. Dialectica 49: 15-46.
Psillos, S. 1999. Scientific Realism: How Science Tracks Truth. Londres: Routledge.
Putnam, H. 1971. Philosophy of Logic. New York: Harper & Row.
Quine, W. V. O. 1960. Word and Object. Cambridge, MA: MIT Press
Quine, W. V. O. 1969. Existence and Quantification. In Ontological Relativity and Other Essays, p.91-113. New York: Columbia University Press.
Robert, G. 2019. Can the Realist Bundle Theory Account for the Numerical Difference Between Qualitatively Non-Discernible Concrete Particulars?. Teorema: Revista Internacional de Filosofía 38(1): 25-40.
Romero, G. 2018. Scientific Philosophy. New York: Springer.
Sambursky, S. 2009. El mundo físico a finales de la antigüedad. Madrid: Alianza Universidad.
Sambursky, S. 2011. El mundo físico de los griegos. Madrid: Alianza Universidad.
Sereni, A. 2015. Frege, Indispensability, and the Compatibilist Heresy. Philosophia Mathematica 23(1): 11-30.
Sładkowski, J. 1996. Exotic smoothness, noncommutative geometry, and particle physics. International Journal of Theoretical Physics 35(10): 2075-2083.
Smolin, L. 2016. Las dudas de la física en el siglo XXI. Barcelona: Crítica.
Steiner, M. 1998. The Applicability of Mathematics as a Philosophical Problem. Cambridge, MA: Harvard University Press
Steiner, M. 2005. Mathematics – Application and Applicability. In S. Shapiro (ed.), The Oxford Handbook of Philosophy of Mathematics and Logic, p.625-650. Oxford: Oxford University Press.
Taubes, C. 2000. Seiberg-Witten and Gromov invariants for symplectic fourmanifolds. Somerville: International Press.
Taubes, C. 2011. Differential geometry: Bundles, connections, metrics and curvature. Oxford: Oxford University Press.
Tegmark, M. 2008. The Mathematical Universe. Foundations of Physics 38(2): 101-150
Thomas, R. 2000. Mathematics and Fictions I: Identification. Logique et Analyse 43(171-172): 301-340.
Thomas, R. 2002. Mathematics and Fictions II: Analogy. Logique et Analyse 45(177-178): 185-228.
Thomasson, A. 1999. Fiction and Metaphysics. Cambridge: Cambridge University Press.
’t Hooft, G. 1974. Magnetic monopoles in unified gauge theories. Nucl. Phys. B 79: 276–284.
Truesdell, C. 1966. Six Lectures on Modern Natural Philosophy. New York: Springer.
Truesdell, C.; Noll, W. 1965. The Non-Linear Field Theories of Mechanics. New York: Springer.
Van Fraassen, B. 2007. Structuralism(s) about Science: Some Common Problems. Proc. Arist. Soc. 81: 45-61.
Wigner, E. P. 1960. The unreasonable effectiveness of mathematics in the natural sciences. Communications on Pure and Applied Mathematics 13(1): 1-14.
Worrall, J. 1989. Structural Realism: The Best of Both Worlds?. Dialectica 43: 99-124.
Yablo, S. 2002. Go figure: A path through Fictionalism. Midwest Studies in Philosophy 25: 72-102.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Rafael Andrés Alemañ Berenguer

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Principia http://www.periodicos.ufsc.br/index.php/principia/index is licenced under a Creative Commons - Atribuição-Uso Não-Comercial-Não a obras derivadas 3.0 Unported.
Base available in www.periodicos.ufsc.br.
