Computadora humana e hipercomputabilidad relativista: una discusión de la Tesis de Turing física

Autores

DOI:

https://doi.org/10.5007/1808-1711.2025.e96501

Palavras-chave:

Máquina de Turing, Computadora Humana, Tesis de Turing Física, Hipercomputabilidad, Hipercomputadora Relativista

Resumo

La Tesis de Turing establece que las funciones efectivamente computables son Turing-computables o computables por alguna máquina de Turing. De modo análogo, la Tesis de Turing física establece que toda función físicamente computable es Turing-computable. Esta tesis involucra una noción de computación física distinta de la versión matemática de la definición de computación. En primer lugar, discutimos la distinción a partir de la condición del vehículo independiente del medio y de la idea de la computadora humana de Turing. En segundo lugar, discutimos la Tesis de Turing física a partir del experimento mental de Andréka et al. (2018) en el que se puede construir una hipercomputadora relativista operando en el contexto de un agujero negro en rotación lenta. Con ello obtenemos un contraejemplo a la Tesis de Turing física puesto que existiría una computadora capaz de computar físicamente funciones no Turing-computables.

Referências

Alonso, E. 2004. Lógica y computabilidad. Summa Logicae en el siglo XXI. http://logicae.usal.es.

Alonso, E. 2006. De la computabilidad a la hipercomputación. Azafea 8: 121-146.

Andréka, H.; Madarász, J.; Németi, I.; Németi, P.; Székely, G. 2018. Relativistic Computation. In: M. Cuffaro; S. Fletcher (ed.), Physical Perspectives on Computation, Computational Perspectives on Physics, p.195-216. Cambridge: Cambridge University Press.

Copeland, B. J. 2002. Accelerating Turing Machines. Minds and Machines 12(2): 281-301.

Copeland, B. J. 2004. Hypercomputation: philosophical issues. Theoretical Computer Science 317: 251-267.

Copeland, B. J. & Shagrir, O. 2007. Physical Computation: How General are Gandy’s Principles for Mechanisms?. Minds & Machines 17: 217-231.

Copeland, B. J. & Shagrir, O. 2011. Do Accelerating Turing Machines Compute the Uncomputable?. Minds and Machines 21(2): 221-239.

Davies, E.B. 2001. Building infinite machines. British Journal for the Philosophy of Science 52(4): 671-682.

Davis, M. 1982. Computability and unsolvability. Nueva York: Dover.

Davis, M. 2006. Why there is no such discipline as hypercomputation. Applied Mathematics and Computation 178(1): 4-7.

Deutsch, D. 1985. Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proceedings of the Royal Society of London 400: 97-117.

Earman, J. 1995. Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes. Oxford: Oxford University Press.

Earman, J. & Norton, J. 1993. Forever is a day: Supertasks in Pitowsky and Malament-Hogarth spacetimes. Philosophy of Science 60(1): 22-42.

Etesi, G. & Németi, I 2002. Non-Turing Computations via Malament-Hogarth Spacetimes. International Journal of Theoretical Physics 41: 342-70.

Gandy, R. 1980. Church’s thesis and the principles for mechanisms. In: J. Barwise,; H. J. Keisler; K. Kunen (ed.), The Kleene symposium. Ámsterdam: North-Holland.

Hogarth, M. 1994. Non-Turing computers and non-Turing computability. Proceedings of the Biennial Meeting of the Philosophy of Science Association 1: 126-138.

Kripke, S. 2013. The Church-Turing ‘Thesis’ as a Special Corollary of Gödel’s Completeness Theorem. In: B. J. Copeland; C. Posy; O. Shagrir (ed.), Computability: Turing, Gödel, Church, and Beyond, p.77-104. Cambridge: The MIT Press.

Manchak, J. 2010. On the Possibility of Supertasks in General Relativity. Foundations of Physics 40(3): 276-288.

Manchak, J. 2020. Malament-Hogarth Machines. British Journal for the Philosophy of Science 71(3): 1143-1153.

Piccinini, G. 2015. Physical Computation. A Mechanistic Account. Oxford: Oxford University Press.

Piccinini, G. & Maley, C. 2021. Computation in Physical Systems. In: E. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Edición de verano 2021. https://plato.stanford.edu/archives/sum2021/entries/computation-physicalsystems.

Pitowsky, I. 1990. The Physical Church Thesis and Physical Computational Complexity. Iyyun 39: 81-99.

Shagrir, O. & Pitowsky, I. 2003. Physical hypercomputation and the church-turing thesis. Minds and Machines 13(1): 87-101.

Sieg, W. 2002. Calculations by man and machine: Mathematical presentation. In: P. Gardenfors; J. Wolenski; K. Kijania-Placek (ed.), In the Scope of Logic, Methodology and Philosophy of Science, vol.I, p.247-262. Países Bajos: Kluwer Academic Publishers.

Sieg, W. 2008. Church Without Dogma: Axioms for Computability. In: S. B. Cooper; B. Löwe; A. Sorbi (ed.), New Computational Paradigms, p.139-152. Nueva York: Springer.

Thomson, J. F. 1954 Tasks and super-tasks. Analysis 15(1): 1-13.

Turing, A. 1936. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the Mathematical Society 42: 230-265.

Wolfram, S. 1985. Undecidability and Intractability in Theoretical Physics. Physical Review Letters 54: 735-738.

Publicado

2025-10-24

Edição

Seção

Artigos