El impacto de los indicadores ambientales en la gestión de residuos en las ciudades
DOI:
https://doi.org/10.5007/2175-8077.2025.e103295Palabras clave:
Ciudades inteligentes, saludables y sostenibles, Eficiencia energética, Gestión de residuosResumen
Contexto: Este estudio explora el impacto de los indicadores ambientales en la calidad del aire, la gestión de residuos y la calidad del agua en las ciudades.
Objetivo: evaluar cómo estos indicadores pueden respaldar políticas urbanas sostenibles.
Metodología: La investigación utiliza un enfoque cuantitativo y descriptivo, empleando cuestionarios para la recopilación de datos a través de Formularios de Google, seguido de un análisis mediante estadística descriptiva y modelos de ecuaciones estructurales de mínimos cuadrados parciales. El estudio identifica cuatro indicadores ambientales principales y desarrolla un modelo inicial compuesto por 74 preguntas. Este modelo se evalúa por su fiabilidad, validez discriminante y validez convergente. El Factor de Inflación de la Varianza (FIV) se utiliza para analizar la colinealidad. El modelo final incluye valores R² y coeficientes de trayectoria, que tienen un alto poder explicativo.
Contribución: el estudio contribuye a la literatura al ofrecer un marco teórico sobre ciudades sostenibles. Desde un punto de vista académico, presenta una metodología eficiente para crear un mapa estratégico y un modelo estadístico que puede ser utilizado por los gestores municipales. La investigación proporciona a los responsables políticos un modelo validado que puede ayudar en la gestión y el monitoreo de los residuos urbanos, con el objetivo de mejorar la calidad ambiental y proteger la salud pública.
Resultados: los resultados sugieren que, si bien los indicadores ambientales tienen un impacto significativo en ciertas áreas, un perfeccionamiento del modelo podría ayudar a abordar mejor los desafíos de la sostenibilidad urbana.
Citas
Ahad, M. A., Paiva, S., Tripathi, G., & Feroz, N. (2020). Enabling technologies and sustainable smart cities. Sustainable cities and society, 61, 102301.
Ahvenniemi, H., Huovila, A., Pinto-Seppä, I., & Airaksinen, M. (2017). What are the differences between sustainable and smart cities?. Cities, 60, 234-245.
Albino, V., Berardi, U., & Dangelico, R. M. (2015). Smart cities: Definitions, dimensions, performance, and initiatives. Journal of urban technology, 22(1), 3-21.
Al-Thani, H., Koç, M., & Isaifan, R. J. (2018). A review on the direct effect of particulate atmospheric pollution on materials and its mitigation for sustainable cities and societies. In Environmental Science and Pollution Research (Vol. 25, Issue 28, pp. 27839–27857).
Anthopoulos, L., Janssen, M., & Weerakkody, V. (2019). A Unified Smart City Model (USCM) for smart city conceptualization and benchmarking. Smart cities and smart spaces: Concepts, methodologies, tools, and applications, 247-264.
Arena, U. (2012). Process and technological aspects of municipal solid waste gasification. A review. Waste management, 32(4), 625-639.
Batista, L., Bourlakis, M., Liu, Y., Smart, P., & Sohal, A. (2018). Supply chain operations for a circular economy. Production Planning & Control, 29(6), 419-424.
Benites, A. J., & Simões, A. F. (2021). Assessing the urban sustainable development strategy: An application of a smart city services sustainability taxonomy. Ecological Indicators, 127. https://doi.org/10.1016/j.ecolind.2021.107734 .
Berardi, U. (2013). Sustainability assessment of urban communities through rating systems. Environment, development and sustainability, 15(6), 1573-1591.
Brdulak, A. (2020). Characteristics of Narrowband IoT (NB-IoT) technology that supports smart city management, based on the chosen use cases from the environment area. Journal of Decision Systems, 1-8.
Brilhante, O., & Klaas, J. (2018). Green city concept and a method to measure green city performance over time applied to fifty cities globally: Influence of GDP, population size and energy efficiency. Sustainability, 10(6), 2031.
Brito, V. T. F., Ferreira, F. A. F., Perez-Gladish, B., Govindan, K., & Meidute-Kavaliauskiene, I. (2019). Developing a green city assessment system using cognitive maps and the Choquet Integral. Journal of Cleaner Production, 218, 486-497. doi: https://doi.org/10.1016/j.jclepro.2019.01.060
Campeol, Giovanni; Carollo, Sandra; Masotto, Nicola. Development Theories and Infrastructural Planning: the Belluno Province. Book Green Energy and Technology, autors Bisello, A; Vettorato, D; Stephens, R; Elisei, P, p. 299-315, DOI: https://doi.org/10.1007/978- , 2017.
Cantuarias-Villessuzanne, C., Weigel, R., & Blain, J. (2021). Clustering of European Smart Cities to Understand the Cities’ Sustainability Strategies. Sustainability, 13(2), 513.
Carli, ., Albino, V., Dotoli, M., Mummolo, G., & Savino, M. (2015, July). A dashboard and decision support tool for the energy governance of smart cities. In 2015 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS) Proceedings (pp. 23-28). IEEE.
Castelli, M.; Gonçalves, I.; Trujillo, L.; Popoviˇc, A. An Evolutionary System for Ozone Concentration Forecasting. Inf. Syst. Front. 2017, 19, 1123–1132.
Chang, D. L., Sabatini-Marques, J., Da Costa, E. M., Selig, P. M., & Yigitcanlar, T. (2018). Knowledge-based, smart and sustainable cities: A provocation for a conceptual framework. Journal of Open Innovation: Technology, Market, and Complexity, 4(1), 5.
Chehri, A., & Mouftah, H. T. (2019). Autonomous vehicles in the sustainable cities, the beginning of a green adventure. Sustainable Cities and Society, 51, 101751. doi: https://doi.org/10.1016/j.scs.2019.101751
Chertow, M. R. (2007). “Uncovering” industrial symbiosis. Journal of industrial Ecology, 11(1), 11-30.
Chin, W. W. The partial least squares approach for structural equation modeling. In: Marcoulides, G.A. Modern methods for business research. London: Lawrence Erlbaum Associates, 1998. P. 295-336.
Cohen, J. Statistical Power Analysis for the Behavioral Sciences. 2 ed. Nova York: Psychology Press, 1988.
Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova, K., Muntean, M., … Granier, C. (2016). Forty years of improvements in European air quality: Regional policy-industry interactions with global impacts. Atmospheric Chemistry and Physics, 16, 3825–3841.
El Ghorab, H. K., & Shalaby, H. A. (2016). Eco and Green cities as new approaches for planning and developing cities in Egypt. Alexandria Engineering Journal, 55(1), 495-503. doi: https://doi.org/10.1016/j.aej.2015.12.018
European Commission (2012). Communication from the commission. Smart cities and communities – European innovation partnership. Brussels. http://ec.europa.eu/energy/ technology/initiatives/doc/2012_4701_smart_cities_en.pdf (accessed 10.2.2016)
European Telecommunications Standards Institute (2017). ETSI TS 103 463 key performance indicators for sustainable digital multiservice cities. Technical specification V1.1.1 (2017-07). http://www.etsi.org/deliver/etsi_ts/103400_103499/103463/01.01.01_60/ts_103463v010101p.pdf , Accessed date: 15 June 2018.
Fenger, J. (1999). Urban air quality. Atmospheric Environment, 33(29), 4877–4900.
Fiore, N. V., Ferreira, C. C., Dzedzej, M., & Massi, K. G. (2019). Monitoring of a seedling planting restoration in a permanent preservation area of the southeast atlantic forest biome, Brazil. Forests, 10(9), 1–12. https://doi.org/10.3390/f10090768
Flynn, B.B., Kakibara, S.S., Schroeder, R.G., Bates, K.A. and Flynn, E.J. (1990), “Empirical research methods in operations management”, Journal of Operations Management, Vol. 9 No. 2, pp. 250-284
Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, v.18, n. 1, p. 39-50, 1981.
Francischini, A. S. N., & Francischini, P. G. (2017). Indicadores de desempenho.
Garau, C., & Pavan, V. M. (2018). Evaluating urban quality: Indicators and assessment tools for smart sustainable cities. Sustainability, 10(3), 575.
Giles-Corti, B., Lowe, M., & Arundel, J. (2019). Achieving the SDGs: Evaluating indicators to be used to benchmark and monitor progress towards creating healthy and sustainable cities. Health Policy. doi: https://doi.org/10.1016/j.healthpol.2019.03.001
Gurjar, B. R., Butler, T. M., Lawrence, M. G., & Lelieveld, J. (2008). Evaluation of emissions and air quality in megacities. Atmospheric Environment, 42(7), 1593–1606.
Hair Junior, J.F. et al. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2. Ed. Los Angeles: SAGE, 2017.
Hák, T., Moldan, B., & Dahl, A. L. (Eds.). (2012). Sustainability indicators: a scientific assessment (Vol. 67). Island Press.
Holman, C., Harrison, R., & Querol, X. (2015). Review of the efficacy of low emission zones to improve urban air quality in European cities. Atmospheric Environment, 111, 161–169.
Hourneaux Jr, Gabriel, Gallardo-Vázquez (2018) Triple bottom line and sustainable performance measurement in industrial companies. Revista de Gestão. 25 (4)
International Standardization Organization (2018a). ISO 37120:2018 Sustainable cities and communities — Indicators for city services and quality of life (2nd ed.). (2018-07).
International Standardization Organization (2018b). ISO/DIS 37122 Sustainable cities and communities – Indicators for smart cities. (Published 2018-06-06).
International Telecommunication Union (2016a). Recommendation ITU-T Y.4901/L.1601key performance indicators related to the use of information and communication technology in smart sustainable cities.
International Telecommunication Union (2016b). Recommendation ITU-T Y.4902/L.1602 key performance indicators related to the sustainability impacts of information and communication technology in smart sustainable cities.
International Telecommunication Union (2016c). Recommendation ITU-T Y.4903/L.1603 key performance indicators for smart sustainable cities to assess the achievement of Sustainable Development Goals.
Jacobsen, R., Willeghems, G., Gellynck, X., & Buysse, J. (2018). Increasing the quantity of separated post-consumer plastics for reducing combustible household waste: The case of rigid plastics in Flanders. Waste management, 78, 708-716.
Jing, Z., & Wang, J. (2020). Sustainable development evaluation of the society–economy–environment in a resource-based city of China:A complex network approach. Journal of Cleaner Production, 121510. doi: https://doi.org/10.1016/j.jclepro.2020.121510
Joshi S., Saxena S., Godbole T., Shreya Developing Smart Cities: An Integrated Framework. Procedia Comput. Sci. 2016.
Laxmi, Vijaya; Dey, Jaydip; Kalawapudi, Komal; Kumar, Rakesh. An innovative approach of urban noise monitoring using cycle in
Nagpur, India. Environmental Science and Pollution Research. December 2019. DOI: https://doi.org/10.1007/s11356-019-06817-0 .
Li, W., & Yi, P. (2020). Assessment of city sustainability—Coupling coordinated development among economy, society and environment. Journal of Cleaner Production, 256, 120453. doi: https://doi.org/10.1016/j.jclepro.2020.120453
Liang Y.X., Cheng X.W., Zhu H., Shutes B., Yan B.X., Zhou Q.W., Yu X.F. Historical evaluation of mariculture in China during past 40 years and its impacts on eco-environment. Chin. Geogr. Sci. 2018
Lou, C. X., Shuai, J., Luo, L., & Li, H. (2020). Optimal transportation planning of classified domestic garbage based on map distance. Journal of environmental management, 254, 109781.
Lu S.R., Liu Y. Evaluation system for the sustainable development of urban transportation and ecological environment based on SVM. J. Intell. Fuzzy Syst. 2018.
Madhanraj Kalyanasundaram; Yogesh Sabde; Kristi Sidney Annerstedt; Surya Singh; Krushna Chandra Sahoo; Vivek Parashar; Manju Purohit; Ashish Pathak; Cecilia Stålsby Lundborg; Kamran Rousta; Kim Bolton; Salla Atkins; Vishal Diwan. Effects of improved information and volunteer support on segregation of solid waste at the household level in urban settings in Madhya Pradesh, India (I-MISS): protocol of a cluster randomized controlled trial. BMC Public Health (2021) https://doi.org/10.1186/s12889-021-10693-0
Mangalekar, S. B., Jadhav, A. S., and Raut P. D. (2012): Study of noise pollution in Kolhapur city, Maharashtra, India. Vol. 2 issue 1, 65-69.
Meerow, S. (2020). The politics of multifunctional green infrastructure planning in New York City. Cities, 100, 102621. doi: https://doi.org/10.1016/j.cities.2020.102621
Mingaleva, Z., Vukovic, N., Volkova, I., & Salimova, T. (2020). Waste management in green and smart cities: A case study of Russia. Sustainability, 12(1), 94.
Moonen, T., Clark, G., & Feenan, R. (2013). The business of cities 2013: What do 150 city indexes and benchmarking studies tell us about the urban world in 2013. Jones Lang LaSalle.
Morero, B., Montagna, A. F., Campanella, E. A., & Cafaro, D. C. (2020). Optimal process design for integrated municipal waste management with energy recovery in Argentina. Renewable Energy, 146, 2626-2636.
Mori, K., & Yamashita, T. (2015). Methodological framework of sustainability assessment in City Sustainability Index (CSI): A concept of constraint and aximization indicators. Habitat International, 45, 10-14.
Nižetić, S., Djilali, N., Papadopoulos, A., & Rodrigues, J. J. (2019). Smart technologies for promotion of energy efficiency, utilization of sustainable resources and waste management. Journal of cleaner production, 231, 565-591.
Organization, W. H. (1998). Glossary WHO Health Promotion Glossary.
Park, J., Lim, S. B., Hong, K. H., Pyeon, M. W., & Lin, J. Y. (2013). An application of emission monitoring system based on real-time traffic monitoring. International Journal of Information Processing and Management, 4(1), 51–57.
Park, J., Sarkis, J., & Wu, Z. (2010). Creating integrated business and environmental value within the context of China’s circular economy and ecological modernization. Journal of Cleaner Production, 18(15), 1494-1501.
Pascal, M., Corso, M., Chanel, O., Declercq, C., Badaloni, C., Cesaroni, G., … Aphekom group. (2013). Assessing the public health impacts of urban air pollution in 25. European cities: Results of the Aphekom project. The Science of the Total Environment, 449, 390–400.
Petern; Linda Lazaro; Yang, Yuzhen. Urban planning historical review of master plans and the way towards a sustainable city: Dar es Salaam, Tanzania, Frontiers of Architectura Research Volume 8, Issue 3, September 2019, Pages 359-377
Robinson, J., & Cole, R. J. (2015). Theoretical underpinnings of regenerative sustainability. Building Research & Information, 43(2), 133-143.
Ruan, F., Yan, L., & Wang, D. (2020). The complexity for the resource-based cities in China on creating sustainable development. Cities, 97, 102571. doi: https://doi.org/10.1016/j.cities.2019.102571
Santamouris M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014.
Sarkar, A. N. (2013). Promoting eco-innovations to leverage sustainable development of eco-industry and green growth. European Journal of Sustainable Development, 2(1), 171-171.
Saunders, M.; Lewis, P.; Thornhill, A. Research methods for business students. 7 ed. Pearson Education, 2016.
Science for Environment Policy (2018). Indicators for sustainable cities. In-depth report 12. Produced for the European Commission DG Environment by the Science Communication Unit, UWE, Bristol.
Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of cleaner production, 16(15), 1699-1710.
Sefair, J. A., Espinosa, M., Behrentz, E., & Medaglia, A. L. (2019). Optimization model for urban air quality policy design: A case study in Latin America. Computers, Environment and Urban Systems, 78, 101385. https://doi.org/10.1016/J.COMPENVURBSYS.2019.101385
Shah, J., Kothari, J., & Doshi, N. (2019). A survey of smart city infrastructure via case study on New York. Procedia Computer Science, 160, 702-705.
Sharifi, A., & Murayama, A. (2013). A critical review of seven selected neighborhood sustainability assessment tools. Environmental impact assessment review, 38, 73-87.
Shumal, M., Jahromi, A. R. T., Ferdowsi, A., Dehkordi, S. M. M. N., Moloudian, A., & Dehnavi, A. (2020). Comprehensive analysis of municipal solid waste rejected fractions as a source of Refused Derived Fuel in developing countries (case study of Isfahan-Iran): Environmental Impact and sustainable development. Renewable Energy, 146, 404-413.
Silva Melo, T., Mota, J. V. L., e Silveira, N. D. B., de Andrade, A. R. S., Peres, M. C. L., de Oliveira, M. L. T., & Delabie, J. H. C. (2020a). Combining ecological knowledge with brazilian urban zoning planning. Urbe, 12. https://doi.org/10.1590/2175-3369.012.E20190135
Silva Melo, T., Mota, J. V. L., e Silveira, N. D. B., de Andrade, A. R. S., Peres, M. C. L., de Oliveira, M. L. T., & Delabie, J. H. C. (2020b). Combining ecological knowledge with brazilian urban zoning planning. Urbe, 12, 2021. https://doi.org/10.1590/2175-3369.012.E20190135
Singh, P. K., & Ohri, A. (2020). Selecting Environmental Indicators for Sustainable Smart Cities Mission in India. Nature Environment and Pollution Technology, 19(1), 201-210.
Sokolov, A., Veselitskaya, N., Carabias, V., & Yildirim, O. (2019). Scenario-based identification of key factors for smart cities development policies. Technological Forecasting and Social Change, 148, 119729. doi: https://doi.org/10.1016/j.techfore.2019.119729
Steiniger, S., Wagemann, E., de la Barrera, F., Molinos-Senante, M., Villegas, R., de la Fuente, H., . . . Barton, J. R. (2020). Localising urban sustainability indicators: The CEDEUS indicator set, and lessons from an expert-driven process. Cities, 101. doi: https://doi.org/10.1016/j.cities.2020.102683
Stone, B., Jr. (2008). Urban sprawl and air quality in large US cities. Journal of Environmental Management, 86(4), 688–698.
Tanguay, G. A., Rajaonson, J., Lefebvre, J. F., & Lanoie, P. (2010). Measuring the sustainability of cities: An analysis of the use of local indicators. Ecological Indicators, 10(2), 407-418.
Tobias, M. S. G., Ramos, R. A. R., & Rodrigues, D. S. (2019). Use of waterway transport integrated to urban transportation systems in Amazonian cities: A vision of sustainable mobility. WIT Transactions on Ecology and the Environment, 238, 615–625. https://doi.org/10.2495/SC190531
Trindade, E. P., Hinnig, M. P. F., da Costa, E. M., Marques, J. S., Bastos, R. C., & Yigitcanlar, T. (2017). Sustainable development of smart cities: A systematic review of the literature. Journal of Open Innovation: Technology, Market, and Complexity, 3(3). https://doi.org/10.1186/s40852-017-0063-2
UN-Habitat, UNESCO, World Health Organisation, UNISDR, UN Women, UNEP, et al. (2016). SDG goal 11 monitoring framework. http://unhabitat.org/sdg-goal-11-monitoring-framework/ , Accessed date: 19 June 2018.
United Nations (2015). Habitat III issue papers, 21 – Smart cities. V. 2.0 (31 May 2015), issued in New York, USA, by UN task team on Habitat III, a task force of UN agencies and programs for the New Urban Agenda, prepared for Habitat III United Nations Conference on Housing and Sustainable Urban Development to take place in Quito, Ecuador, 17–20 October 2016.
Veról, A. P., Lourenço, I. B., Fraga, J. P. R., Battemarco, B. P., Merlo, M. L., de Magalhães, P. C., & Miguez, M. G. (2020). River restoration integrated with sustainable urban water management for resilient cities. Sustainability (Switzerland), 12(11). https://doi.org/10.3390/su12114677
Vijay, Ritesh; Kori, Chandan; Kumar, Manoj; Chakrabarti, Tapan; Gupta, Rajesh. Assessment of Traffic Noise on Highway Passing from Urban Agglomeration. Fluctuation and Noise Letters Vol. 13, No. 04, 1450031 (2014)
Vörösmarty, C. J., Rodríguez Osuna, V., Cak, A. D., Bhaduri, A., Bunn, S. E., Corsi, F., Gastelumendi, J., Green, P., Harrison, I., Lawford, R., Marcotullio, P. J., McClain, M., McDonald, R., McIntyre, P., Palmer, M., Robarts, R. D., Szöllösi-Nagy, A., Tessler, Z., & Uhlenbrook, S. (2018). Ecosystem-based water security and the Sustainable Development Goals (SDGs). Ecohydrology & Hydrobiology, 18(4), 317–333. https://doi.org/10.1016/J.ECOHYD.2018.07.004 .
Vos, P. E., Maiheu, B., Vankerkom, J., & Janssen, S. (2013). Improving local air quality in cities: to tree or not to tree? Environmental Pollution, 183, 113–122.
Zhang J., Li D. Study on water environment restoration and urban water system healthy circulation. Eng. Sci. 2011
Zhang S.F., Hu T.T., Li J.B., Cheng C., Song M.L., Xu B. The effects of energy price, technology, and disaster shocks on China’s Energy-Environment-Economy system. J. Clean. Prod. 2019
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 Stephane Louise Boca Santa, Maria Gabriela Mendonça Peixoto, Gisele Mazon, Felipe Teixeira Dias, Cesar Duarte Souto-Maior, Thiago Coelho Soares, José Baltazar Osório Salgueirinho Andrade de Guerra

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El autor deberá garantizar:
- que exista pleno consenso entre todos los coautores para aprobar la versión final del documento y su envío para publicación.
que su trabajo es original, y si se utilizó trabajo y/o palabras de otras personas, estos fueron debidamente reconocidos.
El plagio en todas sus formas constituye un comportamiento editorial poco ético y es inaceptable. RCA se reserva el derecho de utilizar software o cualquier otro método de detección de plagio.
Todos los envíos recibidos para evaluación en la revista RCA pasan por la identificación de plagio y autoplagio. El plagio identificado en los manuscritos durante el proceso de evaluación dará lugar al archivo del envío. Si se identifica plagio en un manuscrito publicado en la revista, el Editor Jefe realizará una investigación preliminar y, de ser necesario, se retractará.
Los autores otorgan a RCA los derechos exclusivos de primera publicación, estando la obra licenciada simultáneamente bajo la Licencia Creative Commons (CC BY) 4.0 Internacional.

Los autores están autorizados a celebrar contratos adicionales por separado, para la distribución no exclusiva de la versión del trabajo publicado en esta revista (por ejemplo, publicación en un repositorio institucional, en un sitio web personal, publicación de una traducción o como capítulo de un libro), con reconocimiento de autoría y publicación inicial en esta revista.
Esta licencia permite a cualquier usuario tener derecho a:
Compartir: copiar, descargar, imprimir o redistribuir el material en cualquier medio o formato.
Adapte: remezcle, transforme y cree a partir del material para cualquier propósito, incluso comercial.
Bajo los siguientes términos:
Atribución: debe dar el crédito apropiado (citar y hacer referencia), proporcionar un enlace a la licencia e indicar si se realizaron cambios. Debe hacerlo bajo cualquier circunstancia razonable, pero de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
Sin restricciones adicionales: no puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otros hacer algo que la licencia permite.