Os desenvolvimentos da Mecânica Analítica que culminaram na elaboração de F=ma
DOI:
https://doi.org/10.5007/2175-7941.2019v36n1p158Resumo
A lei de Newton e F = ma são princípios diferentes. Cerca de sessenta anos de desenvolvimentos conceituais e matemáticos foram necessários para que a Segunda Lei do Movimento fosse elaborada, em 1752-1776, pelas mãos de Leonhard Euler. Neste trabalho, são discutidos os principais desses fatores adjacentes à construção dessa lei, sem os quais não seria possível Euler, e nenhum outro, obter a Segunda Lei do Movimento, como a conhecemos hoje. Será discutido o que estava sendo feito na mecânica no início do século XVIII e que contribuiu para que bases conceituais fossem elaboradas para que então fosse possível a emergência da Segunda Lei do Movimento como um princípio geral da mecânica, como a busca pela generalização de princípios, a introdução da mecânica analítica, com novas técnicas e ferramentais matemáticos, o estudo de determinados tipos de problemas, a unificação de conceitos e a elaboração de bases alternativas para a mecânica, como os princípios variacionais. Essas realizações contribuíram para que a lei proposta por Newton fosse aperfeiçoada e ampliada por Euler para uma classe muito maior de problemas.
Referências
BERNOULLI, J. 1697. Solutio problematum fraternorum, peculiari programmate cal. Jan. 1697 Groningae, nec non Actorum Lips. mense Jun. & Dez. 1696, & Fev. 1697 propositorum: una cum propositione reciproca aliorum. Acta eruditorum, p. 211-217. Também em sua Opera Omnia (1744), p. 768-778.
¬¬¬ BERNOULLI, J. Demonstration generale du centre de balancement ou d’oscillation tireé de la nature du levier. Mem. Acad. Roy. Sci. Paris, 4. Ed. 1703 (1705), p. 78-84. Também em: Opera Mathematica Varia, v. 2, p. 930-936.
BERNOULLI, J. Meditatio de natura centri oscillationis. Mem. Acad. Roy. Sci. Paris, p. 218, 1714.
BERNOULLI, J. Remarques sur ce qu'on a donn6 jusqu'ici de solutions des Problames sur les Isoperimetres, avec une nouvelle methode courte & facile de lês resoudre sans calcul, laquelle s'étend aussi à d'autres problêmes qui ont rapport à ceux-là. Mémoires de l'Académie Royale des Sciences, 1718 (data de apresentação), p. 100-138, 1719.
BERNOULLI, J. Theoremata selecta pro conservatione virium vivarum demonstranda excerpta ex epistolis datis ad filium Danielem. Comm. Acad. Sci. Petrop., v. 2, p. 200-207. 1727 (data de apresentação), 1729.
BERNOULLI, J. Hydraulica nunc primum detecta ad demonstrata directe ex fundamentis pure mechanicis, 1742a.
BLAY, M. La naissance de la mechanique analytique. La science du mouvement au tournat des XVIIème et XVIIIème siècle, PUF, Paris. 1992.
D’ALEMBERT, J. Traité de dynamique, Paris: David, 1743.
DIAS, P. M. C. F = ma?!! O nascimento da lei dinâmica. Revista Brasileira de Ensino de Física, v. 28, n. 2, p. 205-234, 2006.
EULER, L. Mechanica sive motus scientia analytice exposita. Opera Omnia, série II, v. 1 e 2, 1736.
EULER, L. De minimis oscillationibus corporum tam rigidorum quam flexibilium methodus nova et facilis. Comm. Acad. Sci. Petrop., 1735 (data de apresentação), v. 7, p. 99-122, 1740.
EULER, L. Methodus inveniendi lineas curvas maxime minimive proprietate gaudentes. Lausanæ et Genevæ: M. M. Bousquet et Soc., 1744.
EULER, L. De propagatione pulsuum per medium elasticum. Novi Comm. Acad. Sci. Petrop, 1747/48 (data de apresentação), v. 1, p. 67-105, 1750.
EULER, L. De motu corporum flexibilium. Comm. Acad. Sci. Petrop., 1744 (data de apresentação), v.14, p. 182-196, 1751a.
EULER, L. De motu corporum flexibilium. Opusculi, 1744 (data de apresentação), v. 3, 1751b, p. 88-165, 1751b.
EULER, L. Nova methodus motum corporum rigidorum degerminandi. Novi Commentarii academiae scientiarum Petropolitanae, v. 20, p. 208-238, 1776.
FRASER, C. G. The Origins of Euler's Variational Calculus. Arch. Hist. Exact Sci., v. 47, n. 103, 1994.
GUICCIARDINI, N. Dot-Age: Newton’s mathematical legacy in the eighteenth century. Early Science and Medicine. Newtonianism: Mathematical and 'Experimental', v. 9, n. 3, p. 218-256, 2004.
HEPBURN, B. S. Equilibirum and explanation in 18th century mechanics. Faculty of arts and sciences, University of Pittsburgh, 2007. 134f.
LAGRANGE, J. L. 1. ed: 1788. Mécanique Analytique. Paris, Edição nova e revisada, 1811.
MALTESE, G. La storia di “F = ma”. La seconda legge del moto nel XVIII secolo. Biblioteca di nuncius, Firenze, 1992.
MARONNE, S.; PANZA, M. Euler, Reader of Newton: Mechanics and Algebraic Analysis. Advances in Historical Studies, v. 3, n. 1, p. 12-21, 2014.
MARTINS, L. P. História da Ciência: objetos, métodos e problemas. Ciência & Educação, v. 11, n. 2, p. 305-317, 2005.
MAUGIN, G. A. Continuum Mechanics through the Eighteenth and Nineteenth Centuries. Historical perspectives from John Bernoulli (1727) to Ernst Hellinger (1914). Springer Internacional Publishing Switzerland, 2014.
NEWTON, I. Princípios Matemáticos de Filosofia Natural. Livro I. 3. ed.: 1726. Tradução: Trieste S. F. Ricci, Leonardo G. Brunet, Sônia T. Ghering e Maria Helena C. Celia. 1. ed. São Paulo: Nova Stella Editora, 1990.
PANZA, M. Mathematisation of the Science of Motion and the Birth of Analytical Mechanics: A Historiographical Note. In: CERRAI, P.; FREGUGLIA, P.; PELLEGRINI, C. (Eds). The Application of Mathematics to the Sciences of Nature. Springer, Boston, MA, 2002.
PANZA, M. The Origins of Analytical Mechanics in 18th century. H. N. Jahnke. A History of Analysis, American Mathematical Society and London Mathematical Society, p. 137-153, 2003.
PULTE, H. Order of Nature and Orders of Science. In: LEFÈVRE W. (Eds). Between Leibniz, Newton, and Kant. Boston Studies in the Philosophy and History of Science, v. 220. Springer, Dordrecht, 2001.
SILVA, M. R. Paul Thagard e a inferência da melhor explicação. Cognitio, São Paulo, v. 18, n. 1, p. 125-134, jan./jun. 2017.
SITKO, C. M. Why Newton’s Second Law is not F = ma. Acta Scientiae, v. 21, n. 1, p. 83-94, 2019.
STAN, M. Euler, Newton, and Foundations for Mechanics. In: SMEENK, C.; SCHLIESSER, E. (Eds.). The Oxford Handbook of Newton. Oxford University Press, p. 1-22, 2017.
TAYLOR, B. Methodus incrementorum directa & inversa. Londres, 1715.
TRUESDELL, C. Rational fluid mechanics 1687-1765. Leonhardi Euleri Opera Omnia, serie II, v. 12, parte I, p. I-CXXV, 1955.
TRUESDELL, C. A Program toward Rediscovering the Rational Mechanics of the Age of Reason. Archive for History of Exact Sciences, v.1, n. 1, p. 1-36, ago. 1960.
TRUESDELL, C. Essays in the History of Mechanics. Springer-Verlag. Berlin Heidelberg, New York, 1968.
TRUESDELL, C. Ensayos de historia de la mecânica. Tradução: Juan Carlos Navascues Howard, Enrique Tierno Perez-Relaño. Madrid: Editorial Tecnos, 1975.
VARIGNON, P. Des forces centrales, ou des pesanteurs nécessaires aux planètes pour leur faire décrire les orbes qu’on leur a supposées jusqu’ici. Mem. Acad. Roy. Sci. Paris, 1700 (data de apresentação), p. 218-237, 1703.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
DECLARAÇÃO DE RESPONSABILIDADE Certifico que participei da concepção do trabalho, em parte ou na íntegra, que não omiti quaisquer ligações ou acordos de financiamento entre os autores e companhias que possam ter interesse na publicação desse artigo. Certifico que o texto é original e que o trabalho, em parte ou na íntegra, ou qualquer outro trabalho com conteúdo substancialmente similar, de minha autoria, não foi enviado a outra revista e não o será enquanto sua publicação estiver sendo considerada pelo Caderno Brasileiro de Ensino de Física, quer seja no formato impresso ou no eletrônico.
Caderno Brasileiro de Ensino de Física, Florianópolis, SC, Brasil - - - eISSN 2175-7941 - - - está licenciada sob Licença Creative Commons > > > > >