Journalism, algorithms, and bias: an analysis of startup Knowhere News
DOI:
https://doi.org/10.5007/1984-6924.2023.94993Keywords:
Journalism, bias, AlgorithmsAbstract
The article starts from the empirical analysis of startup Knowhere News to discuss the implication of the algorithmic production of news items. We understand algorithms as knowledge machines and discuss the ideological implications of software designers in configuring the action guidelines of such tools. From the case, which has impartiality as editorial matrix, we seek to understand the meanings of impartiality proposed by the startup and, from an analysis of the journalistic product, map how the human and non-human agents quest to build impartiality effects in the news items. The study considered a set of six articles, each produced in three versions (labeled as positive, negative, and neutral), totalizing eighteen texts. The analysis was carried out considering the operating axes of natural language generation (NLG) and allowed us to recognize production patterns of the impartiality effects connected to the selection, hierarchization, omission, and lexicalization of information.
References
ANDERSON, Janna Quitney; RAINIE, Harrison. The future of the internet: ubiquity, mobility, security. Nova York: Cambria Press, 2009.
ASUR, Sitaram; HUBERMAN, Bernardo A. Predicting the future with social media. In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. Volume 01. IEEE Computer Society, 2010.
BARBOSA, Suzana Oliveira; TORRES, Vitor. Extensões do paradigma JDBD no jornalismo contemporâneo: modos de narrar, formatos e visualização para conteúdos. In: Anais do 21º Encontro Anual da Compós, 2012, Juiz de Fora. Anais eletrônicos... Campinas, Galoá, 2012. Disponível em: https://proceedings.science/compos/compos-2012/trabalhos/extensoes-do-paradigma-jdbd-no-jornalismo-contemporaneo-modos-de-narrar-formatos?lang=pt-br. Acesso em: 21 mar. 2023.
BARBOSA, Suzana Oliveira. Jornalismo Digital em Base de Dados (JDBD): um paradigma para produtos jornalísticos digitais dinâmicos. 2007. 331 f. Tese (Doutorado) - Curso de Programa de Pós-Graduação em Comunicação e Culturas Contemporâneas, Universidade Federal da Bahia, Salvador, 2007.
BARDIN, Laurence. Análise de conteúdo. Lisboa: Edições 70, 1977.
DEEMTER, Kees Van. Computacional models of Referring: a study in Congnitive Science. Massachussets: MIT Press, 2016.
DIAKOPOULOS, Nicholas. Towards a design orientation on algorithms and automation in news production. Digital Journalism, v. 7, n. 8, p. 1180-1184, 2019. DOI: 0.1080/21670811.2019.1682938
FRANCISCO, Virgínia; GERVÁS, Pablo; HERVÁS, Raquel. Assessing the influence of personal preferences on the choice of vocabulary for natural language generation. Information processing & management, v. 49, n. 4, p. 817-832, 2013.
FOSTER, Mary Ellen. Natural language generation for social robotics: opportunities and chal-lenges. Philosophical Transactions Of The Royal Society B: Biological Sciences, [s.l.], v. 374, n. 1771, p.1-6, 29 abr. 2019. The Royal Society.
FURTADO, Silvia de Freitas Dal Ben. Cartografando o jornalismo automatizado: redes sociotécnicas e incertezas na redação de notícias por "robôs". 2018. 120 f. Dissertação (Mestrado) - Curso de Jornalismo, Faculdade de Filosofia e Ciências Humanas, Universidade Federal de Minas Gerais, Belo Horizonte, 2018.
GILLESPIE, Tarleton. A relevância dos algoritmos. Parágrafo, v. 6, n. 1, p. 95-121, 2018.
GITELMAN, Lisa (Ed.). Raw data is an oxymoron. Massachussets: MIT Press, 2013.
HACKETT, Robert. Declínio de um paradigma? A parcialidade e a objectividade nos estudos dos media noticiosos. In: TRAQUINA, Nelson (ed.). Jornalismo: questões, teorias e “estórias”. Lisboa: Vega, 1993. p. 101-130.
HELLSTRÖM, Thomas; DIGNUM, Virginia; BENSCH, Suna. Bias in Machine Learning What is it Good (and Bad) for? [PrePrint]. cs.AI arXiv. DOI: 10.48550/arXiv.2004.00686
LEPPÄNEN, Leo; TUULONEN, Hanna; SIRÉN-HEIKEL, Stefanie. Automated Journalism as a Source of and a Diagnostic Device for Bias in Reporting. Media and Communication, v. 8, n. 3, p. 39-49, 2020.
KITCHIN, Rob. Thinking critically about and researching algorithms. Information, communication & society, v. 20, n. 1, p. 14-29, 2017. DOI: 10.1080/1369118X.2016.1154087
KURZWEIL. A era das máquinas espirituais. Tradução de Fábio Fernandes. São Paulo: Aleph, 2007.
MAHRT, Merja; SCHARKOW, Michael. The value of big data in digital media research. Journal of Broadcasting & Electronic Media, v. 57, n. 1, p. 20-33, 2013. DOI: 10.1080/08838151.2012.761700
Manovich, Lev. The language of new media. Massachussets: MIT Press, 2002.
MAYER-SCHONBERGER, Viktor; CUKIER, Kenneth. Big data: the essential guide to work, life and learning in the age of insight. Londres: Hachette UK, 2013.
NEVEU, Erik. Sociologia do Jornalismo. São Paulo: Edições Loyola, 2006.
NORMANDE, Naara. A automatização da narrativa jornalística. Estudos em Comunicac?a?o, n. 13, p. 363-378, 2013.
OBERMEYER, Ziad; POWERS, Brian; VOGELI, Christine; MULLAINATHAN, Sendhil. Dissecting racial bias in an algorithm used to manage the health of populations. Science, v. 366, n. 6464, p. 447-453, 2019. DOI: 10.1126/science.aax234
SHADOWEN, Nicole. Ethics and bias in machine learning: a technical study of what makes us “good”. In: LEE, Newton (ed.). The Transhumanism Handbook. Berlim: Springer, 2019. p. 247-261.
SCHUDSON, Michael. O modelo americano de jornalismo: excepção ou exemplo?. Comunicação & Cultura, n. 3, p. 115-130, 2007. DOI: 10.34632/comunicacaoecultura.2007.442
SILVEIRA, Denise Tolfo; CÓRDOVA, Fernanda Peixoto. A pesquisa científica. In: GE-RHARDT, Tatiana Engel; SILVEIRA, Denise Tolfo (orgs.). Métodos de Pesquisa. Porto Alegre: UFRGS, 2009. p. 31-42.
THOMSON, Craig; REITER, Ehud; SRIPADA, Somayajulu. Comprehension driven document planning in natural language generation systems. In: Proceedings of The 11th International Natural Language Generation Conference. Association for Computational Linguistics (ACL), 2018. Disponível em: https://aura.abdn.ac.uk/bitstream/handle/2164/11420/Comprehension_Driven_Document_Planning_in_Natural_Language.pdf?sequence=1. Acesso em: 21 mar. 2023.
TUCHMAN, Gaye. A objetividade como ritual estratégico do jornalismo. In: TRAQUINA, Nelson (ed.). Jornalismo: questões, teorias e “estórias”. Lisboa: Vega, 1993. p. 74-90.
VAN DEEMTER, Kees. Computational models of referring: a study in cognitive science. Massachussets: MIT Press, 2016.
VAN DIJCK, José. Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance & Society, v. 12, n. 2, p. 197-208, 2014.
Downloads
Published
Issue
Section
License
Ao encaminhar textos à revista Estudos em Jornalismo e Mídia, o autor estará cedendo integralmente seus direitos patrimoniais da obra à publicação, permanecendo detentor de seus direitos morais (autoria e identificação na obra), conforme estabelece a legislação específica. O trabalho publicado é considerado colaboração e, portanto, o autor não receberá qualquer remuneração para tal, bem como nada lhe será cobrado em troca para a publicação. As ideias e opiniões expressas no artigo são de exclusiva responsabilidade do autor, não refletindo, necessariamente, as opiniões da revista. Citações e transcrições são permitidas mediante menção às fontes. A revista Estudos em Jornalismo e Mídia está sob a Licença Creative Commons
