David Hilbert’s Epistemological Approach: the a priori of Knowledge and the Role of Logic in Foundation of Science

Authors

DOI:

https://doi.org/10.5007/1808-1711.2019v23n2p279

Abstract

This paper explores the main philosophical approaches of David Hilbert’s theory of proof. Specifically, it is focuses on his ideas regarding logic, the concept of proof, the axiomatic, the concept of truth, metamathematics, the a priori knowledge and the general nature of scientific knowledge. The aim is to show and characterize his epistemological approach on the foundation of knowledge, where logic appears as a guarantee of that foundation. Hilbert supposes that the propositional apriorism, proposed by him to support mathematics, sustains — on its turn — a general method for the treatment of the problem in other areas such as natural sciences. This method is axiomatic. Broadly speaking, we intend to recover and update the Hilbert’s philosophical thinking about the role of logic for scientific knowledge.

Author Biography

Rodrigo Lopez-Orellana, University of Salamanca

Becario Conicyt. Doctorando en Lógica y Filosofía de la Ciencia, Universidad de Salamanca. Master en Lógica y Filosofía de la Ciencia por la Universidad de Salamanca.

References

BLANCHETTE, P. (2012), ‘The Frege-Hilbert controversy’, Stanford Encyclopedia of Philosophy. URL: https://plato.stanford.edu/entries/frege-hilbert/

BOLZANO, B. (1973), Theory of Science. Dordrecht: D. Reidel Publishing Company. (1837).

BUSS, S. R. (1998), An introduction to proof theory, en Samuel R. Buss (ed.), Handbook of Proof Theory, Vol. 137 of Studies in Logic and The Foundations of Mathematics. Oxford: Elsevier; pp. 1–78.

CANTOR, G. (1955), Contributions to the Founding of the Theory of Transfinite Numbers. New York: Dover Publications.

CASSINI, A. (2013), El juego de los principios. Una introducción al método axiomático. Buenos Aires: AZ Editora.

COHEN, D. W. (1989), An Introduction to Hilbert Space and Quantum Logic. New York: Springer-Verlag.

CORRY, L. (2004a), David Hilbert and the Axiomatization of Physics (1989-1918). From Grundlagen der Geometrie to Grundlagen der Physik. Dordrecht: Springer- Science+Business Media, B.V.

CORRY, L. (2004b), Modern Algebra and the Rise of Mathematical Structures. Berlin: Sgringer Basel AG.

Da COSTA, N.; FRENCH, S. (2003), Science and Partial Truth: A Unitary Approach to Models and Scientific Reasoning. Oxford: Oxford University Press.

DETLEFSEN, M. (1986), Hilbert’s Program: An Essay on Mathematical Instrumentalism, Vol. 182 of Synthese Librar. Studies in Epistemology, Logic, Methodology and Philosophy of Science. Dordrecht: Springer Science+Business Media.

DÍEZ, José A.; MOULINES, C. Ulises (2008). Fundamentos de filosofía de la ciencia. Barcelona: Editorial Ariel.

EUCLIDES (1991), Elementos. Libros I–IV. Madrid: Editorial Gredos.

EWALD, W. B. (1996), From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Vol. II. Oxford: Clarendon Press.

FEFERMAN, S. (2008), ‘Axioms for determinatess and truth’, Review of Symbolic Logic,1: 204-217.

FREGE, G. (1972), Conceptografía. Ciudad de México: Editorial Universidad Nacional Autónoma de México.

GABRIEL, G. E. A., ed. (1980), Gottlob Frege. Philosophical and Mathematical Correspondence. Oxford: Basil Blackwell.

GÖDEL, K. (2006), Sobre sentencias formalmente indecidibles de principia mathematica y sistemas afines, en J. Mosterín (ed.), Obras completas. Madrid: Alianza Editorial; pp. 53-89.

GRATTAN-GUINNESS, I. (2000), The Search for Mathematical Roots, 1870-1940: Logics, Set Theories and the Foundations of Mathematics from Cantor through Russell to Gödel. Oxford: Princeton University Press.

HAACK, S. (2009), Philosophy of Logics. Cambridge: Cambridge University Press.

HALBACH, V. (2011), Axiomatic Theories of Truth. Cambridge: Cambridge University Press.

HEYTING, A. (1971), Intuitionism. An Introduction, Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland Publishing Company.

HILBERT, D. (1905), ‘On the foundations of logic and arithmetic’, The Monist 15(3): 338–352.

HILBERT, D. (1950), The Foundations of Geometry. Illinois: The Open Court Publishing Company. (1899).

HILBERT, D. (1993), Fundamentos de las matemáticas. México D.F.: Mathema.

HILBERT, D. (2000), ‘Mathematical problems’, Bulletin-American Mathematical Society 37(4): 407-436.

HILBERT, D. (2005a), Axiomatic thought, en W. Ewald, ed., From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Vol. II. Oxford: Clarendon Press; pp. 1105–1115. (1918).

HILBERT, D. (2005b), The grounding of elementary number theory, en W. Ewald (ed.), From Kant to HILBERT: A Source Book in the Foundations of Mathematics, Vol. II. Oxford: Clarendon Press; pp. 1157-1165. (1931).

HILBERT, D. (2005c), Logic and the knowledge of nature, en W. Ewald, ed., From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Vol. II. Oxford: Clarendon Press; pp. 1157-1165. (1930).

HILBERT, D. (2005d), The logical foundations of mathematics, en From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Vol. II. Oxford: Clarendon Press; pp. 1134-1148. (1923).

HILBERT, D.; ACKERMANN, W. (1950), Principles of Mathematical Logic. New York: Chelsea Publishing Company.

HINTIKKA, J. (1988), ‘On the development of the model-theoretic viewpoint in logical theory’, Synthese 77(1): 1-36.

HUERTAS, A.; MANZANO, M. (2017), ‘Teoría de conjuntos’, Online: https://pendien-tedemigracion.ucm.es/info/pslogica/teoriaconjuntos.pdf.

Kant, I. (1997), Crítica de la razón pura. Madrid: Alfaguara.

KITCHER, P. (1976), ‘Hilbert’s epistemology’, Philosophy of Science 43(1): 99-115.

KRONECKER, L. (1996), On the concept of number (1887), en W. B. Ewald (ed.), From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Vol. II. Oxford: Clarendon Press.

MANCOSU, P. (2010), The Adventure of Reason: Interplay Between Philosophy of Mathematics and Mathematical Logic, 1900-1940. Oxford: Oxford University Press.

MOSTERÍN, J. (1980), ‘La polémica entre Frege y Hilbert acerca del método axiomático’, Teorema 10(4): 287-306.

MUELLER, I. (1981), Philosophy of Mathematics and Deductive Structure in Euclid’s Elements. Massachusetts: The MIT Press.

PRAWITZ, D. (1965), Natural Deduction, a Proof-Theoretical Study. Stockholm: Almqvist & Wiksell.

RESNIK, M. D. (1974), ‘On the philosophical significance of consistency proofs’, Journal of Philosophical Logic 3(1–2): 133-147.

ROWE, D. (2000), The calm before the storm: Hilbert’s early views on foundations, en F. E. A. Hendricks (ed.), ‘Proof Theory. History and Philosophical Significance’. London: Kluwer Academic Publisher; pp. 55-94.

SIEG, W. (2013), Hilbert’s Programs and Beyond. Oxford: Oxford University Press.

VAN BENTHEM, J. (2001), ‘Games in dynamic-epistemic logic’, Bulletin of Economic Research 53(4): 219-248.

Van BENTHEM, J. (2014), Logic in Games. Massachusetts: MIT Press.

ZACH, R. (2015), ‘Hilbert’s program’, Stanford Encyclopedia of Philosophy. URL: https://plato.stanford.edu/entries/hilbert-program/

Published

2019-08-16

Issue

Section

Articles