Incomplete yet existent objects: a Nuclear Meinongian approach to quantum metaphysical indeterminacy
DOI:
https://doi.org/10.5007/1808-1711.2025.e108890Keywords:
Metaphysics of Science, Nuclear Meinongianism, Quantum Metaphysical Indeterminacy, Standard Non-Relativistic Quantum Mechanics, Toolbox Approach to MetaphysicsAbstract
This article proposes a reading of quantum metaphysical indeterminacy from the perspective of Parsons’ Nuclear Meinongianism. In doing so, we identify a fundamental incompatibility between a key feature of Parsons’ theory and standard quantum mechanics. Our approach interprets quantum indeterminacy as property incompleteness. However, this move, when combined with Parsons’ framework, leads to what we term the “Incompleteness-Entails-Nonexistence Principle” (IENP), which implausibly entails the nonexistence of quantum objects. For Meinongianism to be a suitable tool for the metaphysics of quantum mechanics, this principle must be addressed. We argue for dropping the IENP and discuss the resulting metaphysical and metametaphysical consequences.
References
Albert, D. Z. 1992. Quantum mechanics and experience. Cambridge: Harvard University Press.
Arenhart, J. R. B.; Arroyo, R. 2021a. On physics, metaphysics, and metametaphysics. Metaphilosophy 52(2): 175–199. http://doi.org/10.1111/meta.12486.
Arenhart, J. R. B.; Arroyo, R. 2021b. The Spectrum of Metametaphysics: Mapping the state of art in scientific metaphysics. Veritas 66(1): 1–51. http://doi.org/10.15448/1984-6746.2021.1.41217.
Arroyo, R. 2022. The Kochen–Specker theorem and ontological (in)completeness of quantum objects. CLE e-Prints 22(1): 1–9.
Armstrong, D. M. 1961. Perception and the physical world. London: Routledge.
Berto, F. 2012. Existence as a Real Property: The Ontology of Meinongianism. Dordrecht: Springer.
Berto, F.; Plebani, M. 2015. Ontology and Metaontology: A Contemporary Guide. New York: Bloomsbury Academic.
Calosi, C. 2022. There Are No Saints: Or, Quantum Multilocation. Grazer Philosophische Studien 99: 30–49. http://doi.org/10.1163/18756735-00000147
Calosi, C.; Wilson, J. 2019. Quantum metaphysical indeterminacy. Philosophical Studies 176: 2599–2627. http://doi.org/10.1007/s11098-018-1143-2.
Correia, F.; Schnieder, B. (ed.). 2012. Metaphysical Grounding: Understanding the Structure of Reality. Cambridge: Cambridge University Press. http://doi.org/10.1017/CBO9781139149136.
Fine, A. 1986. The shaky game: Einstein, realism, and the quantum theory. Chicago: University of Chicago Press.
Fletcher, S. C.; Taylor, D. E. 2021. Quantum indeterminacy and the eigenstate-eigenvalue link. Synthese 199: 1–17. http://doi.org/10.1007/s11229-021-03285-3.
French, S. 2018a. Realism and Metaphysics. In: J. Saatsi (ed.), The Routledge Handbook of Scientific Realism, p.394–406. New York: Routledge.
French, S. 2018b. Toying with the Toolbox: how Metaphysics Can Still Make a Contribution. Journal for General Philosophy of Science, 49: 211–230. http://doi.org/10.1007/s10838-018-9401-8.
French, S.; Krause, D. 2006. Identity in physics: A historical, philosophical, and formal analysis. Oxford: Oxford University Press.
French, S.; McKenzie, K. 2012. Thinking Outside the Toolbox: Towards a More Productive Engagement Between Metaphysics and Philosophy of Physics. European Journal of Analytic Philosophy 8(1): 42–59.
Glick, D. 2017. Against quantum indeterminacy. Thought: A Journal of Philosophy 6(3): 204–213. http://doi.org/10.1002/tht3.250.
Jacquette, D. 2015. Alexius Meinong, The Shepherd of Non-Being. Cham: Springer. http://doi.org/10.1007/978-3-319-18075-5.
Kochen, S.; Specker, E. P. 1967. The Problem of Hidden Variables in Quantum Mechanics. Journal of Mathematics and Mechanics 17(1): 59–87.
Lewis, P. J. 2016. Quantum Ontology. New York: Oxford University Press.
Lombardi, O. forthcoming. The Modal-Hamiltonian Interpretation of Quantum Mechanics: Making sense of the quantum world. Oxford: Oxford University Press.
Parsons, T. 1980. Nonexistent objects. New Heaven: Yale University Press.
Peres, A. 1991. Two simple proofs of the Kochen–Specker theorem. Journal of Physics A: Mathematical and General 24(4): L175–L178. http://doi.org/10.1088/0305-4470/24/4/003.
Reicher, M. 2022. Nonexistent Objects. In: E.N. Zalta; U. Nodelman (ed.), The Stanford Encyclopedia of Philosophy, Winter 2022 Edition.
Routley, R. 1980. Exploring Meinong’s Jungle and Beyond: An Investigation of Noneism and the Theory of Items. Canberra: Research School of Social Sciences, Australian National University.
Schrödinger, E. 1935. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23: 807–812. http://doi.org/10.1007/BF01491891.
Shimony, A. 1984. Contextual hidden variables theories and Bell’s inequalities. The British Journal for the Philosophy of Science 35(1): 25–45. http://doi.org/10.1093/bjps/35.1.25.
Tannoudji, C. C.; Diu, B.; Laloë, F. 2020. Quantum Mechanics, Volume I: Basic Concepts, Tools, and Applications. 2nd ed. Weinheim: Wiley.
Torza, A. 2022. Derivative Metaphysical Indeterminacy and Quantum Physics. In: V. Allori (ed.), Quantum Mechanics and Fundamentality: Naturalizing Quantum Theory between Scientific Realism and Ontological Indeterminacy, p.337–350. Cham: Springer. https://doi.org/10.1007/978-3-030-99642-0_22.
Torza, A. 2023. Indeterminacy in the World`. Cambridge: Cambridge University Press. http://doi.org/10.1017/9781009057370.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Raoni Arroyo, Renato Semaniuc Valvassori

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Principia http://www.periodicos.ufsc.br/index.php/principia/index is licenced under a Creative Commons - Atribuição-Uso Não-Comercial-Não a obras derivadas 3.0 Unported.
Base available in www.periodicos.ufsc.br.
