Some Remarks about Going Towards Inconsistencies

Autores/as

DOI:

https://doi.org/10.5007/1808-1711.2025.e107878

Palabras clave:

Inconsistency, Contradiction, Anomalies, Paraconsistency, Complementarity, Quantum Negation, Zande Logic

Resumen

Inconsistencies! What do they mean? Can we support them? With this paper, we hope to contribute to the claim that we can tolerate inconsistencies in certain situations even without considering any logic that may enable us to do that, say some paraconsistent logic. We argue that in many cases where we apply reason we work in domains where inconsistencies appear and even so we neither get them out (but ‘support’ them) nor modify the underlying logic (such as classical logic) to avoid logical troubles. To make things more precise, we distinguish between inconsistency, anomaly, and contradiction. Our thesis is that we can reason sensibly even with classical logic in the presence of inconsistencies once (as we explain) we either ‘do not go there’ or make things so that the inconsistencies cannot be joined to arrive at a contradiction. Some sample cases are given to motivate the discussion.

Citas

Akama, S. (ed). 2016. Towards Paraconsistent Engineering. Intelligent Systems Reference Library, 110. Springer.

Batens, D. 2000. A survey of inconsistency --- adaptive logics. In: Frontiers of Paraconsistent Logic, pp.49--73. Research Studies Press: Baldock.

Bell, J. L. 2008. A Primer of Infinitesimal Analysis, 2nd. ed. edition. Cambridge Un. Press: Cambridge.

Berkeley, G. 1734. The analyst: A discourse Addressed to an Infidel Mathematician. J. Tonson: London.

Béziau, J.-Y. 2002. Are paraconsistent negations negations? In: Paraconsistency: the logical way to inconsistency, pp.465--486. Marcel Dekker: New York.

Blair, H. A.; Subrahmanian, V. S. 1988. Paraconsistent foundations for logic programming. The Journal of Non-Classical Logic 5(2): 45--73.

Bohr, N. 1985. Collected Works of Niels Bohr, v.6, volume 6. North-Holland: Amsterdam.

Bourbaki, N. 2004. Theory of Sets. Reprint of the original edition, 1968 edition. Springer: Heidelberg and New York.

da Costa, N. C. A. 1980. Ensaio sobre os Fundamentos da Lógica. HUCITEC EdUSP: São Paulo.

da Costa, N. C. A.; Bueno, O.; French, S. 1998. Is there a Zande logic? History and Philosophy of Logic 19: 41--54.

da Costa, N. C. A.; Krause, D. 2004. Complementarity and paraconsistency. In: S. Rahman; J. Symons; D. M. Gabbay; J. Paul van Bendegem (eds) Logic, Epistemology, and the Unity of Science, v.1, pp.557--568. Kluwer Ac. Pu.

da Costa, N. C. A.; Krause, D. 2006. The logic of complementarity. In: J. van Benthem; G. Heinzmann; M Rebushi; H. Visser (eds) The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today, pp.103--120. Springer.

da Costa, N. C. A.; Krause, D. 2020. Suppes predicates for classes of structures and the notion of transportability. In: A. Costa-Leite (ed), Tributes, 42, pp.79--98. College Publications: London.

Dalla Chiara, M. L.; Toraldo di Francia, G. 1993. Individuals, kinds and names in physics. In: G. Corsi; M. L. Dalla Chiara; G. C. Ghirardi (eds), Bridging the Gap: Philosophy, Mathematics, and Physics, Boston Studies in the Philosophy of Science, 140, pp.261--284. Kluwer Ac. Pu..

Diamond, C. editor. 1976. Wittgenstein's Lectures on the Foundations of Mathematics. Cornell Un. Press: Ithaca and New York.

Evans-Pritchard, E. E. 1976. Witchcraft, Oracles, and Magic Among the Azande. Oxford Un. Press: Oxford.

Fraenkel, A. A.; Bar-Hillel, Y.; Levy, A. 1973. Foundations of Set Theory. Studies in Logic and the Foundations of Mathematics, 67, 2nd.revised edition. Elsevier: Amsterdam.

French, A. P.; Kennedy, P. J. (eds.). 1985. Niels Bohr, A Centenary Volume. Harvard Un. Press: Cambridge, MA and London.

Glashow, S. L. 1991. The Charm of Physics. Masters of Modern Physics. Touchstone: New York.

Greenberg, D.; Hentschel, K.; Weinert, F. (eds.). 2009. Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy. Springer.

Jammer, M. 1966. The Conceptual Development of Quantum Mechanics. International Series in Pure and Applied Physics. McGraw-Hill Book Co..

Jammer, M. 1974. The Philosophy Of Quantum Mechanics: The Interpretations Of Quantum Mechanics In Historical Perspective. Wiley and Sons: New York.

Jennings, R. C. 1989. Zande logic and western logic. The British J. for the Philosophy of Science 40(2): 275--285.

Kielkopf, C. F. 1970. Strict finitism: An examination of Ludwig Wittgenstein's ``Remarks on the foundations of mathematics''. Studies in Philosophy; 15. De Gruyter Mouton: The Hague and Paris.

Krause, D.; Arenhart, J. R. B. 2016. A logical account of quantum superpositions. In: D. Aerts; C. de Ronde; H. Freytes; R. Giuntini (eds), Probing the Meaning of Quantum Mechanics: Superpositions, Dynamics, Semantics and Identity, pp.44--59. World Scientific Pu. Co.: Singapore.

Kuhn, T. 1996. The Structure of Scientific Revolutions, 3rd. edition. Un. Chigado Press: Chicago.

Lakatos, I. 1976. Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge Un. Press: Cambridge, 1976.

Laudan, L. 1981. A problem-solving approach to scientific progress. In: I. Hacking (ed) Scientific Revolutions, Oxford Readings in Philosophy, pp.144--155. Oxford Un. Press: Oxford.

de L'Hospital, G.-F.-A. 1696. Analyse des Infiniment Petits, pour L'intelligence des Lignes Courbes. L'Imprimerie Royale: Paris.

Meheus, J. (editor). Inconsistency in Science. Springer Science + Business Media: Dordrecht.

Mendelson, E. 1997. Introduction to Mathematical Logic, 4th edition. Chapman and Hall: London.

Penrose, R. 1999. The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics. Oxford University Press: Oxford.

Popper, K. R. 2002. The Logic of Scientific Discovery. Routledge: London and New York.

Robinson, R. 1960. Non-Standard Analysis. Princeton University Press: Princeton.

Russell, B. 1967. Mathematical logic as based on the theory of types. In: J. van Heijenoort (ed). From Frege to Gödel: A Source Book in Mathematical Logic 1879--1931, pp.150--182. Harvard Un. Press: Cambridge MA.

Suppes, P. 1983. Heuristics and the axiomatic method. In: R. Groner; W. F. Bischof (eds) Methods of Heuristics, pp.79--88. N. J. Erbaum.

Vickers, P. 2013. Understanding Inconsistent Science. Oxford Un. Press: Oxford.

Wittgenstein, L. 1967. Remarks on the Foundations of Mathematics. The M.I.T. Press: Cambridge, MA and London.

Publicado

2025-07-17

Número

Sección

Special Issue on the Interpretation of Paraconsistent Logics