No-localidad: lo que Bell dedujo y lo que los experimentos corroboraron
DOI:
https://doi.org/10.5007/1808-1711.2025.e98958Palavras-chave:
No-Localidad, Bell, Mecánica Cuántica, Relatividad Especial, Fenómenos SingleteResumo
La no-localidad es un fenómeno físico postulado teóricamente y corroborado experimentalmente, que cubre una función mecánico causal en la determinación de los fenómenos singlete. Es, a su vez, un concepto central en la teoría de la información, la criptografía y la computación cuántica. Pese a ello, y debido a su aparente incompatibilidad con la relatividad especial, se han levantado muchas objeciones frente a su aceptación como fenómeno físico. Explicar por qué no son a lugar, es el imperativo de este trabajo.
Referências
Andreoletti, G. & Vervoort, L. 2022. Superdeterminism: a reappraisal. Synthese 200(361): 1-20.
Aspect, A., Grangier, P.; Roger G. 1982. Experimental Realization of Einstein-Podolski-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Physical Review Letters 49(2): 91–94.
Baas, A. & Le Bihan, B. 2023. What does the world look like according to superdeterminism? British Journal for the Philosophy of Science 74(3): 555-572.
Bacciagaluppi, G., & Valentini, A. 2009. Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge: Cambridge University Press.
Bell, J. 1964. On the Einstein Podolsky Rosen paradox. Physics 1: 195–200.
Bell, J. 1986. Beables for quantum field theory. Phys. Rep. 137: 49–54.
Bohm, D. 1951. Quantum Theory. New York: Prentice-Hall.
Bohm, D. & Aharonov, Y. 1957. Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Physical Review 108(4): 1070–1076.
Clauser, J.; Horne, M.; Shimony, A.; Holt, R. 1969. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15): 880–884.
Corry, R. 2015. Retrocausal models for EPR. Studies in History and Philosophy of Modern Physics 49: 1–9.
Costa de Beauregard, O. 1976. Time symmetry and interpretation of quantum mechanics. Foundations of Physics 6(5): 539–559.
Cramer, J. 1980. Generalized absorber theory and the Einstein–Podolsky–Rosen paradox. Physical Review D 22: 362–376.
Cushing, J. 1994. Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony. Chicago: The University of Chicago Press.
Dowe, P. 1997. A defense of backwards intime causation models in quantum mechanics. Synthese 112(2): 233–246.
Dürr, D.; Goldtsein, S.; Münch-Berndl, K.; Zanghí, N. 1999. Hypersurface Bohm–Dirac models. Physical Review A 60: 2729–2736.
Einstein, A.; Podolsky, B.; Rosen, N. 1935. Can quantum mechanical description of reality be considered complete?. Physical Review 47: 777–80.
Giustina, M.; Versteegh, M.; Wengerowsky, S.; Handsteiner, J.; Hochrainer, A.; Phelan, K.; Steinlechner, F.; Kofler, J.; Larsson, J.; Abellán, C.; Amaya, W.; Pruneri, V.; Mitchell, M.; Beyer, J.; Gerrits, T.; Lita, A.; Shalm, L.; Nam, S.; Scheidl, T.; Ursin, R.; Wittmann, B.; Zeilinger, A. 2015. Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons. Physical Review Letters 115(25): 250401.
Hensen, B.; Bernien, H.; Dréau, A.; Reiserer, A.; Kalb, N.; Blok, M.; Ruitenberg, J.; Vermeulen, R.; Schouten, R.; Abellán, C.; Amaya, W.; Pruneri, V.; Mitchell, M.; Markham, M.; Twitchen, D.; Elkouss, D.; Wehner, S.; Taminiau, T.; Hanson, R. 2015. Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526(7575): 682–686.
Holland, P. 1993. The quantum theory of motion: an account of the De Broglie-Bohm causal interpretation of quantum mechanics. Cambridge: Cambridge University Press.
Hossenfelder, S. & Palmer, T. 2020. Rethinking Superdeterminism. Frontiers in Physics 8: 139.
Jaimungal, C. 2023. Theories of Everything with Curt Jaimungal, 25/07/2023. Tim Maudlin y Palmer: Teoría fractal, No-Localidad y Bell. Video. YouTube. https://www.youtube.com/watch?v=883R3JlZHXE&t=5691s
Mauldin, T. 1996. Space-time in the quantum world. In: J. Cushing; A. Fine; S. Goldstein (ed.), Bohmian Mechanics and Quantum Theory: An Appraisal. Boston Studies in the Philosophy of Science, vol.184, p.285-307. Dordrecht: Springer.
Miller, D. 1996. Realism and time symmetry in quantum mechanics. Physics Letters A 222(1–2): 31–36.
Norsen, T. 2017. Foundations of Quantum Mechanics: An Exploration of the Physical Meaning of Quantum Theory. Cham: Springer.
Price, H. 1997. Time's arrow and Archimedes' point: New directions for the physics of time. Oxford: Oxford University Press.
Shalm, L.; Meyer-Scott, E.; Christensen, B.; Bierhorst, P.; Wayne, M.; Stevens, M.; Gerrits, T.; Glancy, S.; Hamel, D.; Allman, M.; Coakley, K.; Dyer, S.; Hodge, C.; Lita, A.; Verma, V.; Lambrocco, C.; Tortorici, E.; Migdall, A.; Zhang, Y.; Nam, S. 2015. Strong loophole-free test of local realism. Physical Review Letters 115: 250402.
Sutherland, R. 1983. Bell's theorem and backwards-in-time causality. International Journal of Theoretical Physics 22(4): 377–384.
Wharton, K. 2007. Time-symmetric quantum mechanics. Foundations of Physics 37(1): 159–168.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Alejandro Rota

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

A obra Principia de http://www.periodicos.ufsc.br/index.php/principia/index foi licenciada com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional.
Com base na obra disponível em www.periodicos.ufsc.br.
