Análise de dados em artigos recuperados da Web of Science (WoS)
DOI:
https://doi.org/10.5007/1518-2924.2018v23nespp112Palavras-chave:
Recuperação da informação, Descoberta de conhecimento em base de dados, Mineração de textoResumo
Dado o contexto da Mineração de Dados e da Mineração de Textos, objetiva-se analisar dados recuperados da Web of Science (WoS). Pretende-se identificar padrões nos estudos sobre Mineração de Textos voltados a escolha de ferramentas a serem utilizadas na aplicação de método de mineração de dados. Recuperaram-se referências de artigos no formato BibTeX na plataforma WoS. Desenvolveu-se uma aplicação para inserção de dados do formato BibTeX para um banco de dados MySQL. Com base nas características encontradas, elegeram-se a ferramenta R e algoritmo Apriori para utilização em parte dos dados. Extraíram-se dados de ferramentas, métodos, palavras-chave, termos, periódicos, países e autores presentes nos registros. A aplicação do Apriori resultou em treze regras de associação. A exploração dos dados de artigos provenientes da WoS revelou características dos estudos da área de Mineração de Textos. Trabalhos futuros podem adaptar a aplicação usada neste estudo e aplicar outros métodos de mineração no conjunto de dados.
Downloads
Referências
AMO, S. de. Técnicas de mineração de dados. s.l.: Universidade Federal de Uberlândia, s.d. Disponível em: <https://www.researchgate.net/profile/Sandra_Amo/publication/260300816_Tcnicas_de_Minerao_de_Dados/links/54230bd80cf290c9e3ae25e3.pdf>. Acesso em: 26 jan. 2016.
CARVALHO, L. A. V. de. Datamining: a mineração de dados no marketing, medicina, economia, engenharia e administração. Rio de Janeiro: Ciência Moderna, 2005.
CASTRO, L. N. de; FERRARI, D. G. Introdução à mineração de dados: conceitos básicos, algoritmos e aplicações. São Paulo: Saraiva, 2016.
COSTA, C. N. et al. Descoberta de Conhecimento em Bases de Dados. Revista Eletrônica: Faculdade Santos Dumont, 2 ed., s.d. Disponível em: <http://fsd.edu.br/revistaeletronica/arquivos/2Edicao/artigo9.pdf>. Acesso em: 26 jan. 2016.
FAYYAD, U.; PIATETSKY-SHAPIRO, G. SMITH, P. From datamining to knowledge discovery in databases. AI Magazine, v. 17, n. 3, p. 37-54, 1996.
FRAWLEY, W. J.; PIATETSKY-SHAPIRO, G.; MATHEUS, C. J. Knowledge discovery in databases: an overview. AI Magazine, v. 13, n. 3, p. 57-70, 1992. Disponível em: <http://www.aaai.org/ojs/index.php/aimagazine/article/viewFile/1011/929>. Aceso em: 21 jan. 2016.
GOLDSCHIMIDT, R.; PASSOS, E. Data mining: um guia prático. Rio de Janeiro: Elsevier, 2005.
HEUSER, C. A. Projeto de banco de dados. 4 ed. [Porto Alegre]: Sagra Luzzatto, 1998. Disponível em: <http://www.julianoribeiro.com.br/troca/banco_de_dados/material_der.pdf>. Acesso em: 05 fev. 2016.
JAVA, A. et al. Why we twitter: understanding microblogging usage and communities. In: WORKSHOP ON WEB MINING AND SOCIAL NETWORK ANALYSIS, 9., 2007, Estados Unidos. Proceedings of ... Estados Unidos: San Jose, 2007. DOI: https://doi.org/10.1145/1348549.1348556
LIU, Bing. Web data mining: exploring hyperlinks, contents, and usage data. Springer Science & Business Media, 2007.
_________. Sentiment analysis and subjectivity. Handbook of Natural Language Processing, v. 2, p. 627-666, 2010.
_________. Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, v. 5, n. 1, p. 1-167, 2012.
MUGNAINI, R.; STREHL, L. Recuperação e impacto da produção científica na era Google: uma análise comparativa entre o Google Acadêmico e a Web of Science. Encontros Bibli, Florianópolis, n. esp., 1º sem. 2008. DOI: https://doi.org/10.5007/1518-2924.2008v13nesp1p92
OLIVEIRA, J. P. M. de et al. Applying Text Mining on electronic messages for Competitive Inteligence. In: INTERNATIONAL CONFERENCE ON ELECTRONIC COMMERCE AND WEB TECHNOLOGIES, 5., 2004, Spain. Proceedings ... Spain: Zaragoza, 2004. Disponível em: <https://www.researchgate.net/profile/Leandro_Wives/publication/221017413_Applying_Text_Mining_on_Electronic_Messages_for_Competitive_Intelligence/links/09e41510bbc3323c41000000.pdf>. Acesso em: 27 jan. 2016.
RAMAKRISHNAN, R; GEHRKE, J. Database management systems. s.l.: s.n., [2000]. Disponível em: <http://dspace.utamu.ac.ug:8080/xmlui/bitstream/handle/123456789/85/%5BRamakrishnan_R.,_Gehrke_J.%5D_Database_Management_S(BookFi.org).pdf>. Acesso em: 15 fev. 2016.
SILBERSCHATZ, A.; KORTH, H. F.; SUDARSHAN, S. Sistema de banco de dados. Rio de Janeiro: Elsevier: 2006. (tradução de Daniel Vieira)
SUMITHRA, R.; PAUL, S. Using distributed apriori association rule and classical apriori mining algorithms for grid based knowledge discovery. In: SECOND INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND NETWORKING TECHNOLOGIES, 2010, India. Proceedings of... Índia, 2010. Disponível em: <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5591577>. Acesso em: 03 ago. 2016. DOI: https://doi.org/10.1109/ICCCNT.2010.5591577
TAN, A-H. Text Mining: the state of the art and the challenges. In: WORKSHOP ON KNOWLEDGE DISCOVERY FROM ADVANCED DATABASES, 1999. Proceedings of ... 1999. Disponível em: <http://www.ntu.edu.sg/home/asahtan/papers/tm_pakdd99.pdf>. Acesso em: 21 jan. 2016.
THOMÉ, A. C. G. Redes neurais: uma ferramenta para KDD e Data Mining. s.l.: [Universidade Federal do Rio de Janeiro], s.d. (Apostila). Disponível em: <http://equipe.nce.ufrj.br/thome/grad/nn/mat_didatico/apostila_kdd_mbi.pdf>. Acesso em: 26 jan. 2016.
VIJAYARANI, S.; MUTHULAKSHMI, M. Comparative analysis of Bayes and Lazy classification algorithms. International Journal of Advanced Research in Computer and Communication Engineering, v. 2, n. 8, ago. 2013.
YONG-HAK, J. Web of Science. Thomson Reuters, 2013.
ZHENG, Z.; KOHAVI, R.; MASON, L. Real world performance of association rule algorithms. In: INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2010, New York. Proceedings of … New York: ACM, 2001. Disponível em: <http://robotics.stanford.edu/users/ronnyk.link/realWorldAssocLongPaper.pdf> Acesso em: 03 ago. 2016. DOI: https://doi.org/10.1145/502512.502572
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2018 Marcelo Batista de Carvalho, Denise Fukumi Tsunoda

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
O autor deve garantir:
- que haja um consenso completo de todos os coautores em aprovar a versão final do documento e sua submissão para publicação.
- que seu trabalho é original, e se o trabalho e/ou palavras de outras pessoas foram utilizados, estas foram devidamente reconhecidas.
Plágio em todas as suas formas constituem um comportamento antiético de publicação e é inaceitável. Encontros Bibli reserva-se o direito de usar software ou quaisquer outros métodos de detecção de plágio.
Todas as submissões recebidas para avaliação na revista Encontros Bibli: revista eletrônica de biblioteconomia e ciência da informação passam por identificação de plágio e autoplágio. Plágios identificados em manuscritos durante o processo de avaliação acarretarão no arquivamento da submissão. No caso de identificação de plágio em um manuscrito publicado na revista, o Editor Chefe conduzirá uma investigação preliminar e, caso necessário, fará a retratação.
Esta revista, seguindo as recomendações do movimento de Acesso Aberto, proporciona seu conteúdo em Full Open Access. Assim os autores conservam todos seus direitos permitindo que a Encontros Bibli possa publicar seus artigos e disponibilizar pra toda a comunidade.
Os conteúdos de Encontros Bibli estão licenciados sob uma Licença Creative Commons 4.0 by.

Qualquer usuário tem direito de:
- Compartilhar — copiar, baixar, imprimir ou redistribuir o material em qualquer suporte ou formato
- Adaptar — remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.
De acordo com os seguintes termos:
- Atribuição — Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de maneira alguma que sugira ao licenciante a apoiar você ou o seu uso.
- Sem restrições adicionais — Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.


















