The Sarkarian proposal and molecular-genetic reductionism

Authors

  • Christian Federico Francese Universidad de Buenos Aires
  • Guillermo Folguera

DOI:

https://doi.org/10.5007/1808-1711.2021.e67973

Abstract

One of the most interesting and influential proposals on the subject of reductionism in Biology has been presented by Sahotra Sarkar, mainly in his book Genetics and Reductionism. There the author proposes a general model of reduction and uses it to analyze the reductive relationships between genotype and phenotype, and of Biology with Chemistry and Physics. One of his thesis is that both reductionisms are entirely different conceptual approaches with no relation between them. In this article we critically explore the Sarkarian thesis. Here we argue that the two reductionisms are deeply interconnected and that together they shape an extended vision in contemporary Biology as well as fundamental incurrent biotechnological projects. We have called such perspective “genetic-molecular reductionism” and characterized from the general Sarkar reduction model. The work carried out allows us to expose both the scope of the Sarkarian proposal itself and some remarkable characteristics of a prevalent perspective in Biology.

References

Brigandt, I.; Love, A. 2017. Reductionism in Biology. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy. Standford: Standford University Press. Disponible en: https://plato.stanford.edu/archives/spr2017/entries/reduction-biology/. Acceso en: 1 de agosto de 2019.

Callebaut, W. 1995. Réduction et explication mécaniste en biologie. Revue philosophique de Louvain, 93(1), 33-66.

Caponi, G. 2004. El reduccionismo en la biología contemporánea. Signos filosóficos, 6(12), pp.33-62.

Carrier, M.; Finzer, P. 2006. Explanatory loops and the limits of genetic reductionism. International Studies in the Philosophy of Science, 20(3), 267-283.

Crick, F. H. 1958. On protein synthesis. Symp Soc Exp Biol 12, 138-163.

Etxeberria Agiriano, A., & Garcia Azkonobieta, T. 2004. Sobre la noción de información genética: seméntica y excepcionalidad. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia, 19(2), 209-230.

Falk, R. 2009. Genetic Analysis, a history of genetic thinking. UK: Cambridge University Press.

Fodor, J. A. 1974. Special sciences (or: The disunity of science as a working hypothesis). Synthese, 28(2), 97-115.

Gilbert, S. F.; Sarkar, S. 2000. Embracing complexity: organicism for the 21st century. Developmental dynamics: an official publication of the American Association of Anatomists, 219(1), 1-9.

Godfrey-Smith, P. 2004. Genes do not encode information for phenotypic traits. In: Hitchcock, C. Contemporary debates in philosophy of science. USA: Blackwell Publishing.

Godfrey-Smith, P.; Sterelny, K. Biological Information. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy. Standford: Standford University Press. Disponible en: https://plato.stanford.edu/archives/sum2016/entries/information-biological/. Acceso en: 1 de agosto de 2019.

Griffiths, P. E. 2001. Genetic information: A metaphor in search of a theory. Philosophy of Science, 68(3), 394-412.

Hull, D. L. 1972. Reduction in genetics--biology or philosophy?. Philosophy of Science, 39(4), pp. 491-499.

Jablonka, E.; Lamb, M. J.; Zeligowski, A. (2013). Evolución en cuatro dimensiones: genética, epigenética, comportamientos y variación simbólica en la historia de la vida. Buenos Aires: Capital Intelectual.

Jacob, F.; Monod, J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. Journal of molecular biology, 3(3), 318-356.

Kaiser, M.I. 2012. Why It Is Time to Move Beyond Nagelian Reduction. In: Probabilities, laws, and structures. Dordretch: Springer, 245-262.

Kaiser, M.I. 2015. Reductive explanation in the biological sciences. Cham: Springer International Publishing.

Keller, E. F. 1990. Physics and the Emergence of Molecular Biology: A History of Cognitive and Political Synergy. Journal of the History of Biology, 23(3): 389-409.

Keller, E.F. 2000. The century of the gene. United States: Harvard University Press.

Kepes, A. 1979. Early Kinetics of Induced Enzyme Synthesis. In: Lwoff, A.; Ullmann, A. Origins of molecular biology: a tribute to Jacques Monod. London: Academic Press, Inc.

Klimovsky, G. 1997. Las desventuras del conocimiento científico. 3°ed. Buenos Aires: A-Z editora

Krimsky, S.; Gruber, J. 2013. Genetic explanations: sense and nonsense. Harvard University Press.

Mahner, M. 2001. Genetics and reductionism: Unveiling mechanisms without metaphysics?. Biology and Philosophy, 16(3), 395-403.

Martin C.; Finzer, P. 2006 Explanatory Loops and the Limits of Genetic Reductionism. International Studies in the Philosophy of Science, 20(3), 267-283.

Mayr, E. 1988. Toward a new philosophy of biology: observations of an evolutionist. Cambridge: Harvard University Press.

McLaughlin, B.; Bennett, K. 2018. Supervenience. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy. Standford: Standford University Press. Disponible en: https://plato.stanford.edu/archives/win2018/entries/supervenience/. Acceso en: 1 de agosto de 2019.

Morange, M. (2000). Gene function. Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie, 323(12), 1147-1153.

Moss, L. 2003. What genes can’t do. USA: MIT Press.

Nagel, E. 1961. The structure of science: Problems in the logic of scientific explanation. USA: Harcourt, Brace & World, Inc.

Noble, D. 2006. The music of life: biology beyond genes. Oxford: Oxford University Press.

Pavone, V. 2007. Biotecnologías y cambio social: ¿derecho a la salud o derecho a estar sanos?: Ingeniería genética, biomedicalización y elección individual. Administración & cidadanía: revista da Escola Galega de Administración Pública, 2(1), 77-92.

Rose, S; Lewontin, R.C.; Kamin, L. J. 1984. Not in our genes. England: Penguin Books.

Rosenberg, A. 1985. The structure of biological science. Cambridge, USA: Cambridge University Press.

Rosemberg, A. 2006. Darwinian reductionism: or, how to stop worrying and love molecular biology. Chicago: University of Chicago Press.

Sarkar, S. 1992. Models of reduction and categories of reductionism. Synthese, 91(3), 167-194.

Sarkar, S. 1996. Decoding" coding": Information and DNA. BioScience, 46(11), 857-864.

Sarkar, S. 1998. Genetics and reductionism. Cambridge, USA: Cambridge University Press.

Sarkar, S. 2002. How to, and how not to, be a reductionist. In: Sarkar, S. 2005. Molecular models of life: philosophical papers on molecular biology. Cambridge, USA: Cambridge University Press.

Sarkar, S. 2004. Genes encode information for phenotypic traits. In: Hitchcock, C. Contemporary debates in philosophy of science. USA: Blackwell Publishing. pp. 259-274.

Sarkar, S. 2005. Molecular models of life: philosophical papers on molecular biology. Cambridge, USA: Cambridge University Press.

Stotz, K., Griffiths, P. E.; Knight, R. 2004. How biologists conceptualize genes: an empirical study. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 35(4), 647-673.

Tauber, A. I.; Sarkar S. 1992. The human genome project: has blind reductionism gone too far? Perspectives in biology and medicine 35(2), pp. 220-235.

Tauber, A. I.; Sarkar, S. 1993. The ideology of the human genome project. Journal of the Royal Society of Medicine, 86(9), 537.

Van Riel, R.; Van Gulick, R. 2018. Scientific Reduction. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy. Standford: Standford University Press. Disponible en: https://plato.stanford.edu/archives/sum2018/entries/scientific-reduction/. Acceso en: 1 de agosto de 2019.

Waters, C. K. 1994. Genes made molecular. Philosophy of Science, 61(2), 163-185.

Wimsatt, W. 2006. Reductionism and its heuristics: Making methodological reductionism honest. Synthese, 151(3), 445-475.

Wimsatt, W.; Sarkar, S. 2006. Reductionism. In: Sarkar,S.; Pfeifer, J. (eds.) The philosophy of science: an enciclopedia. New York: Routledge, 696-703.

Published

2021-12-15

Issue

Section

Articles