A proposta sarkiana e o reducionismo genético-molecular

Autores

  • Christian Federico Francese Universidad de Buenos Aires
  • Guillermo Folguera

DOI:

https://doi.org/10.5007/1808-1711.2021.e67973

Resumo

Uma das propostas mais interessantes e influentes sobre o tema do reducionismo em Biologia foi apresentada por Sahotra Sarkar, principalmente em seu livro Genetics and Reductionism. Ali, o autor propõe um modelo geral de redução e o utiliza para analisar as relações redutivas que existem entre o fenótipo e o genótipo, e da Biologia com a Física e a Química. Uma de suas teses é que ambos os reducionismos constituem abordagens conceituais inteiramente diferentes, sem relação entre si. Neste artigo, investigamos criticamente a tese sarkiana. Aqui, argumentamos que os dois reducionismos estão profundamente interligados e que, juntos, eles formam uma visão ampliada na biologia contemporânea, bem como fundamentais nos projetos biotecnológicos atuais. Chamamos essa perspectiva de "reducionismo genético-molecular" e caracterizamos a partir do modelo geral de redução de Sarkar. O trabalho realizado permite expor tanto o âmbito da própria proposta sarkiana como algumas características marcantes de uma perspectiva predominante na Biologia.

Referências

Brigandt, I.; Love, A. 2017. Reductionism in Biology. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy. Standford: Standford University Press. Disponible en: https://plato.stanford.edu/archives/spr2017/entries/reduction-biology/. Acceso en: 1 de agosto de 2019.

Callebaut, W. 1995. Réduction et explication mécaniste en biologie. Revue philosophique de Louvain, 93(1), 33-66.

Caponi, G. 2004. El reduccionismo en la biología contemporánea. Signos filosóficos, 6(12), pp.33-62.

Carrier, M.; Finzer, P. 2006. Explanatory loops and the limits of genetic reductionism. International Studies in the Philosophy of Science, 20(3), 267-283.

Crick, F. H. 1958. On protein synthesis. Symp Soc Exp Biol 12, 138-163.

Etxeberria Agiriano, A., & Garcia Azkonobieta, T. 2004. Sobre la noción de información genética: seméntica y excepcionalidad. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia, 19(2), 209-230.

Falk, R. 2009. Genetic Analysis, a history of genetic thinking. UK: Cambridge University Press.

Fodor, J. A. 1974. Special sciences (or: The disunity of science as a working hypothesis). Synthese, 28(2), 97-115.

Gilbert, S. F.; Sarkar, S. 2000. Embracing complexity: organicism for the 21st century. Developmental dynamics: an official publication of the American Association of Anatomists, 219(1), 1-9.

Godfrey-Smith, P. 2004. Genes do not encode information for phenotypic traits. In: Hitchcock, C. Contemporary debates in philosophy of science. USA: Blackwell Publishing.

Godfrey-Smith, P.; Sterelny, K. Biological Information. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy. Standford: Standford University Press. Disponible en: https://plato.stanford.edu/archives/sum2016/entries/information-biological/. Acceso en: 1 de agosto de 2019.

Griffiths, P. E. 2001. Genetic information: A metaphor in search of a theory. Philosophy of Science, 68(3), 394-412.

Hull, D. L. 1972. Reduction in genetics--biology or philosophy?. Philosophy of Science, 39(4), pp. 491-499.

Jablonka, E.; Lamb, M. J.; Zeligowski, A. (2013). Evolución en cuatro dimensiones: genética, epigenética, comportamientos y variación simbólica en la historia de la vida. Buenos Aires: Capital Intelectual.

Jacob, F.; Monod, J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. Journal of molecular biology, 3(3), 318-356.

Kaiser, M.I. 2012. Why It Is Time to Move Beyond Nagelian Reduction. In: Probabilities, laws, and structures. Dordretch: Springer, 245-262.

Kaiser, M.I. 2015. Reductive explanation in the biological sciences. Cham: Springer International Publishing.

Keller, E. F. 1990. Physics and the Emergence of Molecular Biology: A History of Cognitive and Political Synergy. Journal of the History of Biology, 23(3): 389-409.

Keller, E.F. 2000. The century of the gene. United States: Harvard University Press.

Kepes, A. 1979. Early Kinetics of Induced Enzyme Synthesis. In: Lwoff, A.; Ullmann, A. Origins of molecular biology: a tribute to Jacques Monod. London: Academic Press, Inc.

Klimovsky, G. 1997. Las desventuras del conocimiento científico. 3°ed. Buenos Aires: A-Z editora

Krimsky, S.; Gruber, J. 2013. Genetic explanations: sense and nonsense. Harvard University Press.

Mahner, M. 2001. Genetics and reductionism: Unveiling mechanisms without metaphysics?. Biology and Philosophy, 16(3), 395-403.

Martin C.; Finzer, P. 2006 Explanatory Loops and the Limits of Genetic Reductionism. International Studies in the Philosophy of Science, 20(3), 267-283.

Mayr, E. 1988. Toward a new philosophy of biology: observations of an evolutionist. Cambridge: Harvard University Press.

McLaughlin, B.; Bennett, K. 2018. Supervenience. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy. Standford: Standford University Press. Disponible en: https://plato.stanford.edu/archives/win2018/entries/supervenience/. Acceso en: 1 de agosto de 2019.

Morange, M. (2000). Gene function. Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie, 323(12), 1147-1153.

Moss, L. 2003. What genes can’t do. USA: MIT Press.

Nagel, E. 1961. The structure of science: Problems in the logic of scientific explanation. USA: Harcourt, Brace & World, Inc.

Noble, D. 2006. The music of life: biology beyond genes. Oxford: Oxford University Press.

Pavone, V. 2007. Biotecnologías y cambio social: ¿derecho a la salud o derecho a estar sanos?: Ingeniería genética, biomedicalización y elección individual. Administración & cidadanía: revista da Escola Galega de Administración Pública, 2(1), 77-92.

Rose, S; Lewontin, R.C.; Kamin, L. J. 1984. Not in our genes. England: Penguin Books.

Rosenberg, A. 1985. The structure of biological science. Cambridge, USA: Cambridge University Press.

Rosemberg, A. 2006. Darwinian reductionism: or, how to stop worrying and love molecular biology. Chicago: University of Chicago Press.

Sarkar, S. 1992. Models of reduction and categories of reductionism. Synthese, 91(3), 167-194.

Sarkar, S. 1996. Decoding" coding": Information and DNA. BioScience, 46(11), 857-864.

Sarkar, S. 1998. Genetics and reductionism. Cambridge, USA: Cambridge University Press.

Sarkar, S. 2002. How to, and how not to, be a reductionist. In: Sarkar, S. 2005. Molecular models of life: philosophical papers on molecular biology. Cambridge, USA: Cambridge University Press.

Sarkar, S. 2004. Genes encode information for phenotypic traits. In: Hitchcock, C. Contemporary debates in philosophy of science. USA: Blackwell Publishing. pp. 259-274.

Sarkar, S. 2005. Molecular models of life: philosophical papers on molecular biology. Cambridge, USA: Cambridge University Press.

Stotz, K., Griffiths, P. E.; Knight, R. 2004. How biologists conceptualize genes: an empirical study. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 35(4), 647-673.

Tauber, A. I.; Sarkar S. 1992. The human genome project: has blind reductionism gone too far? Perspectives in biology and medicine 35(2), pp. 220-235.

Tauber, A. I.; Sarkar, S. 1993. The ideology of the human genome project. Journal of the Royal Society of Medicine, 86(9), 537.

Van Riel, R.; Van Gulick, R. 2018. Scientific Reduction. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy. Standford: Standford University Press. Disponible en: https://plato.stanford.edu/archives/sum2018/entries/scientific-reduction/. Acceso en: 1 de agosto de 2019.

Waters, C. K. 1994. Genes made molecular. Philosophy of Science, 61(2), 163-185.

Wimsatt, W. 2006. Reductionism and its heuristics: Making methodological reductionism honest. Synthese, 151(3), 445-475.

Wimsatt, W.; Sarkar, S. 2006. Reductionism. In: Sarkar,S.; Pfeifer, J. (eds.) The philosophy of science: an enciclopedia. New York: Routledge, 696-703.

Publicado

2021-12-15

Edição

Seção

Artigos