Incidência e trajetória de marcadores ideais de saúde cardiovascular em trabalhadores

Autores

DOI:

https://doi.org/10.1590/1980-0037.2025v27e106662

Palavras-chave:

Adulto, Fatores de Risco de Doenças Cardíacas, Saúde cardiovascular, Estudos Longitudinais, Trabalhadores

Resumo

As doenças cardiovasculares são as principais causas de morte no mundo. Os fatores de risco para essas doenças têm alta prevalência na população global. O objetivo deste estudo foi avaliar a incidência e a trajetória dos fatores de risco associados à Saúde Cardiovascular Ideal em trabalhadores. Este estudo retrospectivo acompanhou 417 funcionários de um hospital de ensino. Entrevistas sociodemográficas e avaliações de peso, altura, índice de massa corporal (IMC), pressão arterial, glicemia e perfil lipídico foram conduzidas em três momentos: 2012, 2014 e 2016. Uma modelagem de mistura discreta foi usada para determinar as trajetórias de risco cardiovascular ao longo de um período de acompanhamento de cinco anos. Foi encontrada alta prevalência e incidência de fatores de risco cardiovascular. As trajetórias de risco cardiovascular identificadas pelo modelo mostraram um padrão estável e foram associadas à Saúde Cardiovascular Ideal, com trajetórias desfavoráveis ​​aumentando o risco de Saúde Cardiovascular Inadequada. As avaliações revelaram alta prevalência e incidência de fatores de risco cardiovascular. O modelo de trajetória demonstrou variáveis ​​estáveis ​​associadas à Saúde Cardiovascular Inadequada, destacando a necessidade de investigações sobre o estilo de vida e a trajetória dos fatores de risco associados à Saúde Cardiovascular Ideal.

Referências

World Health Organization. Global Status Report on Noncommunicable Diseases 2014. World Heal Organ. 2014;1–279.

Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16(4):223–37.

Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: The american heart association’s strategic impact goal through 2020 and beyond. Circulation. 2010;121(4):586–613.

Velasquez-Melendez G, Felisbino-Mendes MS, Matozinhos FP, Claro R, Gomes CS, Malta DC. Ideal cardiovascular health prevalence in the Brazilian population – National Health Survey (2013). Brazilian J Epidemiol. 2015;18(2):97–108.

De Moraes ACF, Carvalho HB, McClelland RL, Diez-Roux A V., Szklo M. Sex and ethnicity modify the associations between individual and contextual socioeconomic indicators and ideal cardiovascular health: MESA study. J Public Health (Oxf). 2019;41(3):e237–44.

Pollock BD, Stuchlik P, Harville EW, Mills KT, Tang W, Chen W, et al. Life course trajectories of cardiovascular risk: Impact on atherosclerotic and metabolic indicators. Atherosclerosis. 2019;280:21–7.

World Health Organization. Obesity: Preventing and Managing the global epidemic. World Health Organization. 2000.

Coleman A, Steel S, Freeman P, De Greeff A, Shennan A. Validation of the Omron MX3 Plus oscillometric blood pressure monitoring device according to the British Hypertension Society protocol. Blood Press Monit. 2008;13(1):49–54.

White WB, Berson AS, Robbins C, Jamieson MJ, Prisant LM, Roccella E, et al. National standard for measurement of resting and ambulatory blood pressures with automated sphygmomanometers. Hypertension. 1993;21(4):504–9.

Nylund KL, Asparouhov T, Muthén BO. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Struct Equ Model. 2007;14(4):535–69.

Nagin DS. Group-based modeling of development. Cambridge, MA, USA: Harvard University Press; 2005.

Ministry of Healthy. Department of Health Surveillance. 2010.

Bajaj NS, Osborne MT, Gupta A, Tavakkoli A, Bravo PE, Vita T, et al. Coronary Microvascular Dysfunction and Cardiovascular Risk in Obese Patients. J Am Coll Cardiol. 2018;72(7):707–17.

Nascimento BR, Brant LCC, de Oliveira GMM, Malachias MVB, Reis GMA, Teixeira RA, et al. Cardiovascular disease epidemiology in Portuguese-speaking countries: Data from the global burden of disease, 1990 to 2016. Arq Bras Cardiol. 2018;110(6):500–11.

Brant LCC, Nascimento BR, Passos VMA, Duncan BB, Bensenõr IJM, Malta DC, et al. Variations and particularities in cardiovascular disease mortality in Brazil and Brazilian states in 1990 and 2015: estimates from the Global Burden of Disease. Brazilian J Epidemiol. 2017;20(25000192049):116–28.

de Araújo LFSC, Dalgalarrondo P, Banzato CEM. On the notion of causality in medicine: addressing Austin Bradford Hill and John L. Mackie. Rev Psiquiatr Clin. 2014;41(2):56–61.

Dhana K, van Rosmalen J, Vistisen D, Ikram MA, Hofman A, Franco OH, et al. Trajectories of body mass index before the diagnosis of cardiovascular disease: a latent class trajectory analysis. Eur J Epidemiol. 2016;31(6):583–92.

Allen NB, Siddique J, Wilkins J, Shay C, Lewis CE, Goff DC, et al. Blood Pressure Trajectories in Early Adulthood and Subclinical Atherosclerosis in Middle Age. JAMA - J Am Med Assoc [Internet]. 2014;311(5):490–7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122296/pdf/nihms603914.pdf

Yuan Z, Yang Y, Wang C, Liu J, Sun X, Liu Y, et al. Trajectories of long-term normal fasting plasma glucose and risk of coronary heart disease: A prospective cohort study. J Am Heart Assoc. 2018;7(4):1–7.

Lee CL, Sheu WHH, Lee I Te, Lin SY, Liang WM, Wang JS, et al. Trajectories of fasting plasma glucose variability and mortality in type 2 diabetes. Diabetes Metab [Internet]. 2018;44(2):121–8. Available from: http://dx.doi.org/10.1016/j.diabet.2017.09.001

Hulsegge G, Spijkerman AMW, Van Der Schouw YT, Bakker SJL, Gansevoort RT, Smit HA, et al. Trajectories of metabolic risk factors and biochemical markers prior to the onset of cardiovascular disease - The Doetinchem cohort study. PLoS One. 2016;11(5):1–15.

Pletcher MJ, Vittinghoff E, Thanataveerat A, Bibbins-Domingo K, Moran AE. Young adult exposure to cardiovascular risk factors and risk of events later in life: The Framingham Offspring Study. PLoS One. 2016;11(5):1–15.

Radler BT, Rigotti A, Ryff CD. Persistently high psychological well-being predicts better HDL cholesterol and triglyceride levels: Findings from the midlife in the U.S. (MIDUS) longitudinal study. Lipids Health Dis. 2018;17(1):1–9.

Haukka E, Kaila-Kangas L, Luukkonen R, Takala EP, Viikari-Juntura E, Leino-Arjas P. Predictors of sickness absence related to musculoskeletal pain: A two-year follow-up study of workers in municipal kitchens. Scand J Work Environ Heal. 2014;40(3):278–86.

Folsom AR, Yatsuya H, Nettleton JA, Lutsey PL, Cushman M, Rosamond WD. Community prevalence of ideal cardiovascular health, by the american heart association definition, and relationship with cardiovascular disease incidence. J Am Coll Cardiol. 2011;57(16):1690–6.

Buchvold HV, Pallesen S, Waage S, Bjorvatn B. Shift work schedule and night work load: Effects on body mass index - A four-year longitudinal study. Scand J Work Environ Heal. 2018;44(3):251–7.

Shen S, Lu Y, Qi H, Li F, Shen Z, Wu L, et al. Association between ideal cardiovascular health and the atherogenic index of plasma. Med (United States). 2016;95(24):1–6.

Bastien M, Poirier P, Lemieux I, Després JP. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis [Internet]. 2014;56(4):369–81. Available from: http://dx.doi.org/10.1016/j.pcad.2013.10.016

Bell JA, Kivimaki M, Hamer M. Metabolically healthy obesity and risk of incident type 2 diabetes: A meta-analysis of prospective cohort studies. Obes Rev. 2014;15(6):504–15.

Rinaldi W, Ribeiro TAS, Marques AS, Fabricio GS, Tófolo LP, Gomes RM, et al. Effect of small litter size on the autonomic and metabolic responses of wistar rats. Rev Nutr. 2012;25(3):321–30.

Downloads

Publicado

2026-01-09