Pontos de corte da força de preensão manual e teste de sentar e levantar da cadeira ajustados alometricamente para identificar sarcopenia em idosos portugueses

Autores

DOI:

https://doi.org/10.1590/1980-0037.2022v24e84063

Palavras-chave:

Avaliação da Deficiência, Fragilidade, Estado Funcional, Avaliação geriátrica, Limitação da mobilidade, Análise de escalonamento multidimensional

Resumo

A força muscular absoluta ou ajustada pelo índice de massa corporal (IMC) é útil para identificar a sarcopenia. No entanto, esses valores não são precisos para idosos com tamanhos corporais extremos devido à relação não linear entre força e tamanho corporal. O objetivo foi determinar os pontos de corte para identificar a sarcopenia em idosos usando coeficientes alométricos para normalizar a força de preensão manual (FPM) e teste de sentar e levantar da cadeira em 30 segundos (30-s CST) por tamanho corporal. Os expoentes alométricos foram propostos com modelos log-lineares para variáveis de tamanho corporal (massa corporal, estatura e IMC). A remoção do efeito do tamanho corporal na força muscular com normalização alométrica foi testada por correlação parcial. Os pontos de corte para baixa força muscular foram estabelecidos pela curva ROC e índice de Youden considerando a limitação funcional (teste de caminhada de seis minutos<400m). Os expoentes alométricos fornecidos para variáveis de tamanho corporal variam de -0,01 a 2,28 (FPM) e -0,27 a 0,21 (30-s CST). O efeito do tamanho corporal na força muscular foi removido com normalização alométrica (r<0,30). A precisão dos pontos de corte sempre foi adequada (AUC?0,78; p<0,001). Em conclusão, foram propostos pontos de corte para FPM e 30-s CST normalizados alometricamente para identificar sarcopenia em idosos portugueses e a alometria manteve a precisão adequada (AUC>70%). A alometria removeu a influência do tamanho corporal na expressão da FPM e 30-s CST e permite avaliar a força muscular independentemente do tamanho corporal.

Referências

Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2018;48(1):16-31. doi: 10.1093/ageing/afy169

Beaudart C, Rizzoli R, Bruyère O, Reginster J-Y, Biver E. Sarcopenia: burden and challenges for public health. Archives of Public Health. 2014;72(45):1-8. doi: 10.1186/2049-3258-72-45

Santanasto AJ, Miljkovic I, Cvejkus RK, Wheeler VW, Zmuda JM. Sarcopenia Characteristics Are Associated with Incident Mobility Limitations in African Caribbean Men: The Tobago Longitudinal Study of Aging. J Gerontol A Biol Sci Med Sci. 2020;75(7):1346-52. doi: 10.1093/gerona/glz233

Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill CL. Hand Grip Strength: age and gender stratified normative data in a population-based study. BMC Research Notes. 2011;4(127):1-5.

Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary IJ, Dennison EM, et al. Grip strength across the life course: normative data from twelve British studies. PloS one. 2014;9(12):e113637. doi: 10.1371/journal.pone.0113637

Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. Journal of Applied Physiology. 2003;95(5):1851-60.

Wang YC, Bohannon RW, Li X, Sindhu B, Kapellusch J. Hand-Grip Strength: Normative Reference Values and Equations for Individuals 18 to 85 Years of Age Residing in the United States. The Journal of orthopaedic and sports physical therapy. 2018;48(9):685-93. doi: 10.2519/jospt.2018.7851

McGrath R, Hackney KJ, Ratamess NA, Vincent BM, Clark BC, Kraemer WJ. Absolute and Body Mass Index Normalized Handgrip Strength Percentiles by Gender, Ethnicity, and Hand Dominance in Americans. Advances in geriatric medicine and research. 2020;2(1). doi: 10.20900/agmr20200005

Foley KT, Owings TM, Pavol MJ, Grabiner MD. Maximum grip strength is not related to bone mineral density of the proximal femur in older adults. Calcified Tissue International. 1999;64(4):291-4.

Maranhao Neto GA, Oliveira AJ, Pedreiro RC, Pereira-Junior PP, Machado S, Marques Neto S, et al. Normalizing handgrip strength in older adults: An allometric approach. Archives of Gerontology and Geriatrics. 2017;70:230-4. doi: 10.1016/j.archger.2017.02.007

Pua Y-H. Allometric analysis of physical performance measures in older adults. Physical therapy. 2006;86(9):1263-70.

Abdalla PP, Carvalho AS, Santos AP, Venturini ACR, Alves TC, Mota J, et al. Cut-off points of knee extension strength allometrically adjusted to identify sarcopenia risk in older adults: A cross-sectional study. Arch Gerontol Geriatr. 2020;89:104100. doi: 10.1016/j.archger.2020.104100

Kuo YL. The influence of chair seat height on the performance of community-dwelling older adults' 30-second chair stand test. Aging Clin Exp Res. 2013;25(3):305-9. doi: 10.1007/s40520-013-0041-x

Huxley JS. Constant Differential Growth-Ratios and their Significance. Nature. 1924;114(2877):895-6. doi: 10.1038/114895a0

Rikli RE, Jones CJ. Development and Validation of a Functional Fitness Test for Community-Residing Older Adults. 1999;7(2):129. doi: 10.1123/japa.7.2.129 10.1123/japa.7.2.129

Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, et al. Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc. 2011;12(6):403-9. doi: 10.1016/j.jamda.2011.04.014

Myers R. Classical and modern regression with applications. Boston: PWS and Kent Publishing Company. Inc; 1990.

Mukaka MM. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):69-71.

Schisterman EF, Perkins NJ, Liu A, Bondell H. Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology. 2005;16(1):73-81.

Hosmer D, Lemeshow S. Applied logistic regression. 2 ed. Nova Jersey, EUA: John Wiley & Sons; 2000.

Abdalla PP, Venturini ACR, Santos APD, Tasinafo M, Marini JAG, Alves TC, et al. Normalizing calf circumference to identify low skeletal muscle mass in older women: a cross-sectional study. Nutr Hosp. 2021;38(4):7. doi: 10.20960/nh.03572

Owings TM, Pavol MJ, Grabiner MD. Lower extremity muscle strength does not independently predict proximal femur bone mineral density in healthy older adults. Bone. 2002;30(3):515-20.

Mendes J, Amaral TF, Borges N, Santos A, Padrão P, Moreira P, et al. Handgrip strength values of Portuguese older adults: a population based study. BMC geriatrics. 2017;17(1):191. doi: 10.1186/s12877-017-0590-5

Marques EA, Baptista F, Santos R, Vale S, Santos DA, Silva AM, et al. Normative functional fitness standards and trends of Portuguese older adults: cross-cultural comparisons. J Aging Phys Act. 2014;22(1):126-37. doi: 10.1123/japa.2012-0203

Kara M, Ata AM, Çakır B, Kaymak B, Özçakar L. The Impact of Cut-Off Values and Adjustments for Muscle Mass and Strength on Diagnosis of Sarcopenia. J Am Med Dir Assoc. 2019;20(12):1653. doi: 10.1016/j.jamda.2019.07.014

McGrath R. Comparing absolute handgrip strength and handgrip strength normalized to body weight in aging adults. Aging Clinical and Experimental Research. 2019;31(12):1851-3. doi: 10.1007/s40520-019-01126-5

Bohannon RW. Hand-grip dynamometry predicts future outcomes in aging adults. Journal of geriatric physical therapy (2001). 2008;31(1):3-10. doi: 10.1519/00139143-200831010-00002

Bohannon RW. Grip Strength: An Indispensable Biomarker For Older Adults. Clinical interventions in aging. 2019;14:1681-91. doi: 10.2147/cia.s194543

Gould H, Brennan SL, Kotowicz MA, Nicholson GC, Pasco JA. Total and appendicular lean mass reference ranges for Australian men and women: the Geelong osteoporosis study. Calcif Tissue Int. 2014;94(4):363-72. doi: 10.1007/s00223-013-9830-7

Downloads

Publicado

2023-02-23