Perfil físico e motor de crianças entre os 6 e os 10 anos de idade em função dos níveis de aptidão cardiorrespiratória

Autores

DOI:

https://doi.org/10.1590/1980-0037.2023v25e94396

Palavras-chave:

Aptidão física, Coordenação motora, Aptidão cardiorrespiratória

Resumo

Comparar o perfil físico e motor de crianças dos 6 aos 10 anos, conforme os seus níveis de aptidão cardiorrespiratória (AptC). Participaram do estudo 2036 crianças de seis a 10 anos de idade de São José dos Pinhais-PR. Foram avaliados estatura, massa corporal, índice de massa corporal (IMC), aptidão física (AptF) e coordenação motora (CMG). A AptC foi avaliada pela distância total percorrida no teste de seis minutos. A CMG foi avaliada por meio da bateria de testes KTK. As crianças foram classificadas em função dos níveis de AptC (baixo-moderado-elevado). Diferenças entre grupos foram testadas utilizando da ANOVA one way. As análises dos dados foram realizadas no software SPSS, com nível de significância em 5%. Crianças com menor nível de AptC apresentam maiores valores médios adiposidade. Nos testes de AptF, crianças com níveis baixos de AptC apresentaram maiores valores de preensão e pior desempenho nos demais testes. Relativamente à CMG, crianças com baixos níveis de AptC apresentaram piores desempenho coordenativo. Diferenças significativas foram encontradas para as comparações entre os outros grupos (baixo-moderado; baixo-elevado) com vantagem nos resultados nos níveis moderados a elevados de AptC. Obter níveis moderados de AptC pode trazer benefícios protetores em diferentes variáveis do processo de crescimento e desenvolvimento de crianças durante a segunda infância. Avaliar a AptC não traz somente uma avaliação momentânea, como pode ser feito o monitoramento de uma importante variável de saúde bem como indicar uma predisposição sobre outras variáveis físico-motoras.

Biografia do Autor

Raquel Nichele de Chaves, Universidade Tecnológica Federal do Paraná

 

 

 

 

 

 

 

Referências

Ortega FB, Ruiz JR, Castillo MJ, Sjostrom M. Physical fitness in childhood and

adolescence: a powerful marker of health. Int J Obes 2008;32(1):1-11.

Shephard RJ, Bouchard C. Population evaluations of health related fitness from perceptions of physical activity and fitness. Can J Appl Physiol. 1994;19(2):151-73.

American College Of Sports Medicine, A. Guidelines for exercise testing and prescription. Williams & Wilkins, 1991.

Ruiz JR, Cavero-Redondo I, Ortega FB, Welk GJ, Andersen LB, Martinez-Vizcaino V. Cardiorespiratory fitness cut points to avoid cardiovascular disease risk in children and adolescents; what level of fitness should raise a red flag? A systematic review and meta-analysis. Br J Sports Med. 2016; 50(23):1451–8.

Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activi-ty; Human Kinetics: Champaign, IL, USA, 2004.

Papalia, DE, Feldman RD. Human Development. 12a The McGraw-Hill Companies, Inc., New York. 2013.

Kasa-Vubu JZ, Lee CC, Rosenthal A, Singer K, Halter JB. Cardiovascular Fitness and Exercise as Determinants of Insulin Resistance in Postpubertal Adolescent Females. J Clin Endocrinol Metab. 2005;90(2):849–54.

Andersen SA, Cooper AR, Riddoch C, et al. Low cardiorespiratory fitness is a strong predictor for clustering of cardiovascular disease risk factors in children independent of country, age and sex. Eur J Cardiovasc Prev Rehabil 2007; 14(4): 526-31.

Zaqout M, Vyncke K, Moreno L, De Miguel-Etayo P, Lauria F, Molnar D, Lissner L, et al. Determinant factors of physical fitness in European children. Int J Public Health. 2016;61(5):573-82.

Petroski EL, Silva AF, Rodrigues AB, Pelegrini A. Association between low levels of physical fitness and sociodemographic factors in adolescents from rural and urban areas. Motri 2012;8(1):5-13.

Ribeiro RQ. Additional cardiovascular risk factors associated with excess weight in children and adolescents: the Belo Horizonte heart study. Arq Bras Cardiol. 2006;86(6):408-18.

Ruiz JR, Rizzo NS, Hurtig-Wennlöf A, Ortega FB, W àrnberg J, Sjöström M. Relations of total physical activity and intensity to fitness and fatness in children: the European Youth Heart Study. Am J Clin Nutr. 2006;84(2):299–303.

Stodden DF, Goodway JD, Langendorfer SJ, Roberton MA, Rudisill ME, Garcia C, et al. A developmental perspective on the role of motor skill competence in physical activity: an emergent relationship. Quest. 2008;60:290-306.

Cattuzzo MT, dos Santos RH, Ré AH, de Oliveira IS, Melo BM, de Sousa MM, et al. Motor competence and health related physical fitness in youth: a systematic review. J Sci Med Sport. 2016;19:123-9.

Robinson LE, Stodden DF, Barnett LM, Lopes VP, Logan SW, Rodrigues LP, D'Hondt E. Motor Competence and its Effect on Positive Developmental Trajectories of Health. Sports med. 2015;45(9), 1273–1284.

Lima RA, Bugge A, Ersboll AK, Stodden DF, Andersen LB. The longitudinal relationship between motor competence and measures of fatness and fitness from childhood into adolescence. J Pediatr (Rio J). 2019;95(4):482–8.

Lubans DR, Morgan PJ, Cliff DP, Barnett LM, Okely AD. Fundamental movement skills in children and adolescents. Sport Med. 2010;40:1019-35.

International Society for the Advancement of Kinanthropometry (ISAK). International standards for anthropometric assessment. Underdale, SA, Australia, 2001.

American Alliance For Health Physical Education and Recreation. Youth fitness test manual. Washington: AAHPER, 1976.

Schilling F. Sum of Raw Scores of Each KTK Test, Personal communication (E-mail to jmaia@fade.up.pt). 24 March 2015. (In English).

Barnett LM, Lai SK, Veldman SLC, Hardy LL, Cliff DP, Morgan PJ, et al. Correlates of Gross Motor Competence in Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. 2016;19;46(11):1663–88.

Reyes AC, Chaves R, Baxter-Jones ADG, Vasconcelos O, Barnett LM, Tani G, Hedeker D, Maia J. Modelling the dynamics of children's gross motor coordination. J Sports Sci. 2019;37(19):2243-2252.

Lopes VIP, Maia JAR, Rodrigues LP, Malina R. Motor coordination, physical activity and fitness as predictors of longitudinal change in adiposity during childhood. Eur J Sport Sci. 2012;12(4):384–91.

Artero EG, España-Romero V, Ortega FB, Jiménez-Pavón D, Ruiz JR, Vicente Rodríguez G, et al. Health related fitness in adolescents: Underweight, and not only overweight, as an influencing factor. The AVENA study. Scand J Med Sci Sports. 2010, 23, 418–427.

Pate RR, Wang CY, Dowda M, Farrell SW, O’Neill JR. Cardiorespiratory fitness levels among US youth 12 to 19 years of age: findings from the 1999-2002 Na-tional Health and Nutrition Examination Survey. Arch Pediatr Adolesc Med 2006;160(10)0:1005-12.

Xu Y, Mei M, Wang H, Yan Q, He G. Association between Weight Status and Physical Fitness in Chinese Mainland Children and Adolescents: A Cross-Sectional Study. Int J Environ Res Public Health. 2020;(7)1-17.

Souza MC, Chaves RN, dos Santos FK, Gomes TNQF, Santos DV, Borges AS, et al. The Oporto mixed-longitudinal growth, health and performance study. Design, methods and baseline results. Ann Hum Biol. 2016;44(1):11–20.

Vandendriessche JB, Vandorpe B, Coelho-e-Silva MJ, Vaeyens R, Lenoir M, Lefevre J, et al. Multivariate Association Among Morphology, Fitness, and Motor Coordination Characteristics in Boys Age 7 to 11. Pediatr Exerc Sci. 2011;23(4):504–20.

Chaves R, Baxter-Jones A, Gomes T, Souza M, Pereira S, Maia J. Effects of Individual and School-Level Characteristics on a Child’s Gross Motor Coordination Development. Int J Environ Res Public Health. 2015;12(8):8883–96.

Ré AHN, Logan SW, Cattuzzo MT, Henrique RS, Tudela MC, Stodden DF. Comparison of motor competence levels on two assessments across childhood. J Sports Sci. 2017;36(1):1–6.

Downloads

Publicado

2024-03-01