Tradução automática: uma análise crítica do desempenho da tradução automática estatística e baseada em regras

Autores

DOI:

https://doi.org/10.5007/2175-7968.2020v40n1p54

Palavras-chave:

Tradução automática baseada em regras, Tradução automática estatística, Avaliação de outputs da tradução automática

Resumo

O ensaio fornece uma avaliação crítica do desempenho de dois sistemas distintos de tradução automática, Systran e Google Translate. Primeiro, é fornecida uma breve visão geral dos sistemas de tradução automática baseados em regras e estatísticas, seguida de uma discussão sobre os problemas envolvidos na avaliação automática e humana das outputs de tradução automática. Por fim, as traduções em alemão de Mark Twain, traduzidas por Systran e Google Translate, estão sendo avaliadas criticamente, destacando alguns dos desafios linguísticos enfrentados por cada sistema de tradução.

Biografia do Autor

Brita Banitz, Universidad de las Américas Puebla, San Andrés Cholula,

PhD (2005) in English (Language and Linguistics) from Purdue University, IN, USA. MA (2002) in Teaching English as a Second Language from Kent State University, OH, USA. BA (2000) in German Linguistics from the Technical University of Dresden, Germany. Associate Professor of Applied Linguistics at the Universidad de las Américas Puebla, Mexico.

Referências

Arnold, Douglas, Lorna Balkan, Siety Meijer, R. Lee Humphreys, and Louisa Sadler. Machine translation: An introductory guide. Oxford: Blackwell, 1994.

Callison-Burch, Chris, Miles Osborne, and Philipp Koehn. “Re-evaluating the role of BLEU in machine translation research,” 2006. http://homepages.inf.ed.ac.uk/pkoehn/publications/bleu2006.pdf. Accessed 13 February 2019.

Costa-Jussà, Marta R., Mireia Farrús, José B. Mariño, and José A. R. Fonollosa. “Study and comparison of rule-based and statistical Catalan-Spanish machine translation systems.” Computing and Informatics, 31 (2012): 245-270.

Farrús, Mireia, Marta R. Costa-Jussà, and Maja Popović. “Study and correlation analysis of linguistic, perceptual, and automatic machine translation evaluations.” Journal of the American Society for Information Science and Technology, 63.1 (2012): 174-184.

Forcada, Mikel L. (2010). “Machine translation today.” Handbook of translation studies. Ed. Yves Gambier and Luc van Doorslaer. Amsterdam: John Benjamins, 2010. 215-223.

Hutchins, W. John, and Harold L. Somers. An introduction to machine translation. London: Academic Press, 1992.

Kalyani, Aditi, Hemant Kumud, Shashi Pal Singh, Ajai Kumar, and Hemant Darbari. “Evaluation and ranking of machine translation output in Hindi language using precision and recall oriented metrics.” International Journal of Advanced Computer Research, 4.14 (2014): 54-59.

Koehn, Phillip. Statistical machine translation. Cambridge: Cambridge University Press, 2010.

Schneider, Michael. “Die schreckliche deutsche Sprache.” https://www.hmtm-hannover.de/uploads/media/Die_schreckliche_deutsche_Sprache_06.pdf. Accessed 13 February 2019.

Snover, Matthew, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. “A study of translation edit rate with targeted human annotation,” 2006. https://www.cs.umd.edu/~snover/pub/amta06/ter_amta.pdf. Accessed 13 February 2019.

Somers, Harold L. “Machine translation: History, development, and limitations.” The Oxford handbook of translation studies. Ed. Kirsten Malmkjaer and Kevin Windle. Oxford: Oxford University Press, 2011. 427-440.

Twain, Mark. “The awful German language.” https://www.cs.utah.edu/~gback/awfgrmlg.html#x1. Accessed 14 May 2018.

Quah, Chiew Kin. Translation and technology. New York: Palgrave Macmillan, 2006.

Zydroń, Andrzej, and Qun Liu. “Measuring the benefits of using SMT.” MultiLingual, 1/2 (2017): 63-66. http://dig.multilingual.com/2017-01-02/index.html?page=63. Accessed 13 February 2019.

Publicado

2020-01-22