Scientific production about hospitals in the context of Data Science: a study from the Web of Science
DOI:
https://doi.org/10.5007/1518-2924.2021.78824Keywords:
Data Science, Bibliometrics, Web of Science, Big Data, Machine LearningAbstract
Objective: to carry out the bibliometric analysis on the applications of Data Science in the context of hospital associations.
Methods: Through research in the Web of Science database, it was verified the existence of terms related to Data Science, such as, big data, data analysis, businesss intelligence, data mining, data warehouse, text mining and data science, relating them to hospitals. Data analysis was based on the social network analysis technique. The period considered was from 2015 to 2019.
Results: Machine learning and electronic health records emerge as relevant issues. The most expressive interactions reflect the inclination of Medical Informatics in matters related to decision making, information systems for hospitals and intensive care units. Regarding the fields, it is noted the expected predominance of the Health area and of the domains belonging or bordering on Technology. In addition, it can be seen that the wide variety of areas found accuses the interdisciplinary nature of the subject, including, with an important participation of Information Science. Regarding the geography of knowledge, there is a reasonable degree of decentralization, with representative productions in North America, Europe and Asia. As for the publication vehicles, emphasis is given to Studies in Informatics and Health Technology, which comprise a series of publications. The two most representative journals on the list are, respectively, members of the Springer Nature and Elsevier groups, major players in the scientific publishing market.
Conclusions: Finally, there is evidence of the multidisciplinarity around the subject studied and the technology company for the progress of hospital associations
Downloads
References
AMARAL, F. Introdução à Ciência de Dados: mineração de dados e big data. Alta books: Rio de Janeiro, 2016.
ARNOTT, D.; LIZAMA, F.; SONG, Y. Patterns of business intelligence systems use in organizations. Decision Support Systems, [s. l.], v. 97, p. 58-68, maio 2017.
BARABÁSI, A. L. Network science. Cambridge: University Press, 2016.
BHAVNANI, S. P.; MUÑOZ, D.; BAGAI, A. Data Science in Healthcare. Circulation: Cardiovascular Quality and Outcomes, Dallas, TX, v. 9, n. 6, p. 683-687, nov. 2016. Ovid Technologies (Wolters Kluwer Health). Disponível em: https://www.ahajournals.org/doi/epub/10.1161/CIRCOUTCOMES.116.003081. Acesso em: 01 nov. 2020.
BONNEY, R.; COOPER, C.; BALLARD, H. The theory and practice of citizen science: Launching a new journal. Citizen Science: Theory and Practice, [s. l.], v. 1, n. 1, 2016. Disponível em: https://theoryandpractice.citizenscienceassociation.org/articles/10.5334/cstp.65/. Acesso em: 20 nov. 2020.
BUGNION, P.; MANIVANNAN, A.; NICOLAS, P. R. Scala: Guide for Data Science Professionals. Birmingham: Packt Publishing, 2017.
CAO, L. Data science and analytics: a new era. International Journal of Data Science and Analytics, [s. l.], v. 1, p. 1-2, 2016. Disponível em: https://link.springer.com/content/pdf/10.1007/s41060-016-0006-1.pdf. Acesso em: 20 nov. 2020.
DALIANIS, H. et al. Health bank-A - Workbench for data science applications in healthcare. In: CAiSE 2015 INDUSTRY TRACK, 27., 2015, Estocolomo, Suécia. Proceedings […]. Estocolmo, Suécia: CAiSE, 2015. p. 1-18.
DESAUTELS, T. et al. Prediction of early unplanned intensive care unit readmission in a UK tertiary care hospital: a cross-sectional machine learning approach. BMJ open, [s. l.], v. 7, n. 9, 2017. Disponível em: https://bmjopen.bmj.com/content/bmjopen/7/9/e017199.full.pdf. Acesso em: 20 nov. 2020.
ELLIOTT, K. C.; ROSENBERG, J. Philosophical foundations for citizen science. Citizen Science: Theory and Practice, [s. l.], v. 4, n. 1, 2019. Disponível em: https://theoryandpractice.citizenscienceassociation.org/articles/10.5334/cstp.155/print/. Acesso em: 20 nov. 2020.
FORD, E. et al. Extracting information from the text of electronic medical records to improve case detection: a systematic review. Journal of the American Medical Informatics Association, [Oxford], v. 23, n. 5, p. 1007-1015, 2016.
GALVÃO, A. B.; VALENTIM, R. A. M. Desafios para os avanços da análise de big data na Saúde. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE, 19., 2019, Niterói. Anais Estendidos do XIX Simpósio Brasileiro de Computação Aplicada à Saúde. Niterói: SBC, 2019. p. 155-160.
GÓMEZ-VALLEJO, H. J. et al. A case-based reasoning system for aiding detection and classification of nosocomial infections. Decision Support Systems, [s. l.], v. 84, p. 104-116, 2016.
HUI, C. et al. Research on diabetes prediction method based on electronic medical record data analysis. In: INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND BIOENGINEERING, 1., 2020, XI'An. Proceedings [...]: XI'An, 2020. p. 1-4. Disponível em: https://www.e3sconferences.org/articles/e3sconf/pdf/2020/45/e3sconf_iceeb2020_03001.pdf. Acesso em: 01 nov. 2020.
HWANG, U. et al. Disease prediction from electronic health records using generative adversarial networks. arXiv preprint, 2017. Disponível em: https://arxiv.org/pdf/1711.04126.pdf. Acesso em: 01 fev. 2019.
IOS PRESS. Studies in Health Technology and Informatics. 2020. Disponível em: https://www.iospress.nl/bookserie/studies-in-health-technology-and-informatics/#scope. Acesso em: 10 dez. 2020.
JOKONYA, O. Towards a Big Data Framework for the Prevention and Control of HIV/AIDS, TB and Silicosis in the Mining Industry. Procedia Technology, [s. l.], v. 16, p. 1533-1541, 2014. Disponível em: https://www.sciencedirect.com/science/article/pii/S2212017314004022. Acesso em: 20 nov. 2020.
KOHLI, R.; TAN, S. S. L. Electronic health records: how can IS researchers contribute to transforming healthcare?. Mis Quarterly, [s. l.], v. 40, n. 3, p. 553-573, 2016.
LIN, Y. et al. Research on using ANP to establish a performance assessment model for business intelligence systems. Expert Systems with Applications, [s. l.], v. 36, p. 4135-4146. 2009.
MOSTAFA, S. P.; ROCHA, E. S. S. O rizoma e as voltas que o mundo dá. Texto Digital, Florianópolis, v. 16, n. 1, p. 124-140, 2020. Disponível em: https://periodicos.ufsc.br/index.php/textodigital/article/view/1807-9288.2020v16n1p124. Acesso em: 20 nov. 2020.
NISSEN, F. et al. Validation of asthma recording in electronic health records: a systematic review. Clinical epidemiology, [s. l.], v. 9, p. 643-656, 2017. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716672/. Acesso em: 20 nov. 2020.
RAUTENBERG, S.; CARMO, P. R. V. do. Big data e ciência de dados: complementariedade conceitual no processo de tomada de decisão. Brazilian Journal of Information Science: research trends, Marília, v. 13, n. 1, p. 56-67, 2019. Disponível em: https://revistas.marilia.unesp.br/index.php/bjis/article/view/8315. Acesso em: 20 nov. 2020.
ROMANOWSKI, J. P.; ENS, R. T. As pesquisas denominadas do tipo “estado da arte” em educação. Revista Diálogo Educacional, v. 6, n. 19, p. 37-50, set./dez. 2006.
SCHWAB, K. A Quarta Revolução Industrial. São Paulo: Edipro, 2016.
SUCHTING, R. et al. A data science approach to predicting patient aggressive events in a psychiatric hospital. Psychiatry research, [Limerick], v. 268, p. 217-222, 2018.
VAN ECK, N.; WALTMAN, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, [Amsterdam], v. 84, n. 2, p. 523-538, 2010.
ZIVIANI, A. Desafios de ciência de dados aplicada à saúde digital. In: BRASIL. Ministério da Saúde. Reflexões sobre ensino e pesquisa no SUS: experiência no contexto hospitalar de alta complexidade. Brasília: Ministério da Saúde, 2019. p. 14-19. Disponível em: http://bvsms.saude.gov.br/bvs/publicacoes/reflexoes_ensino_pesquisa_sus.pdf. Acesso em: 20 nov. 2020.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Natanael Vitor Sobral, Gillian Leandro de Queiroga Lima, Ana Sara Pereira de Melo Sobral
This work is licensed under a Creative Commons Attribution 4.0 International License.
The author must guarantee that:
- there is full consensus among all the coauthors in approving the final version of the document and its submission for publication.
- the work is original, and when the work and/or words from other people were used, they were properly acknowledged.
Plagiarism in all of its forms constitutes an unethical publication behavior and is unacceptable. Encontros Bibli has the right to use software or any other method of plagiarism detection.
All manuscripts submitted to Encontros Bibli go through plagiarism and self-plagiarism identification. Plagiarism identified during the evaluation process will result in the filing of the submission. In case plagiarism is identified in a manuscript published in the journal, the Editor-in-Chief will conduct a preliminary investigation and, if necessary, will make a retraction.
This journal, following the recommendations of the Open Source movement, provides full open access to its content. By doing this, the authors keep all of their rights allowing Encontros Bibli to publish and make its articles available to the whole community.
Encontros Bibli content is licensed under a Creative Commons Attribution 4.0 International License.
Any user has the right to:
- Share - copy, download, print or redistribute the material in any medium or format.
- Adapt - remix, transform and build upon the material for any purpose, even commercially.
According to the following terms:
- Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything that the license permits.