LIRA – Linguagem Intermodal de Reconhecimento Afetivo: uma base de dados multimodal para reconhecimento de emoções musicais
DOI:
https://doi.org/10.5007/1518-2924.2026.e107990Palabras clave:
Banco de dados, Multimodal, Reconhecimento de emoções musicais, Extração de características musicais, Recuperação da informaçãoResumen
Objetivo: este artigo apresenta a LIRA - Linguagem Intermodal de Reconhecimento Afetivo, uma base de dados multimodal desenvolvida para apoiar pesquisas em reconhecimento de emoções musicais. A LIRA preenche lacunas de bases existentes ao oferecer anotações emocionais e representações ricas em cinco modalidades.
Método: a base é composta por 1.412 segmentos de 30 segundos de músicas, cada um rotulado com uma das quatro emoções discretas: alegria, raiva/medo, serenidade ou tristeza. A LIRA inclui cinco modalidades: áudio, acordes, letras, atributos simbólicos e voz. A extração das características foi realizada com ferramentas como Librosa, Essentia, music21 e Spleeter.
Resultados: foram extraídas 171 características no total: 67 do áudio, 58 da voz, 25 dos acordes, 12 simbólicas e 9 das letras. Os dados emocionais e estruturais estão organizados em formato reutilizável. Todo o material e os scripts estão disponíveis publicamente no Mendeley Data e GitHub.
Conclusões: a LIRA é uma base de dados multimodal e anotada afetivamente, disponível publicamente, que favorece pesquisas robustas e reprodutíveis em reconhecimento de emoções musicais. Sua diversidade modal e formato padronizado permitem uma exploração aprofundada das respostas emocionais à música e apoiam o desenvolvimento de modelos computacionais mais expressivos.
Descargas
Citas
BIGAND, E. et al. Multidimensional scaling of emotional responses to music: the effect of musical expertise and of the duration of the excerpts. Cognition and Emotion, [s. l.], v. 19, n. 8, p. 1113-1139, 2005. Available at: https://doi.org/10.1080/02699930500204250. Accessed on: 11 July 2025. DOI: https://doi.org/10.1080/02699930500204250
CHATURVEDI, V. et al. Music mood and human emotion recognition based on physiological signals: a systematic review. Multimedia Systems, [s. l.], v. 28, n. 21, p. 21-44, apr. 2021. Available at: https://doi.org/10.1007/s00530-021-00786-6. Accessed on: 11 July 2025. DOI: https://doi.org/10.1007/s00530-021-00786-6
FAN, J. et al. Ranking-Based emotion recognition for experimental music. In: INTERNATIONAL SOCIETY FOR MUSIC INFORMATION RETRIEVAL CONFERENCE, 18., 2017, Suzhou. Proceedings [...]. Suzhou: ISMIR, 2017. p. 368-375. Available at: http://archives.ismir.net/ismir2017/paper/000217.pdf. Accessed on: 11 July 2025.
FLEISS, J. L. Measuring nominal scale agreement among many raters. Psychological Bulletin, [s. l.], v. 76, n. 5, p. 378-382, Nov. 1971. Available at: https://psycnet.apa.org/doi/10.1037/h0031619. Accessed on: 11 July 2025. DOI: https://doi.org/10.1037/h0031619
GÓMEZ-CAÑÓN, J. S. et al. Music emotion recognition: toward new, robust standards in personalized and context-sensitive applications. IEEE Signal Processing Magazine, [s. l.], v. 38, n. 6, p. 106-114, Oct. 2021. Available at: https://doi.org/10.1109/MSP.2021.3106232. Accessed on: 11 July 2025. DOI: https://doi.org/10.1109/MSP.2021.3106232
JUSLIN, P. N.; LAUKKA, P. Expression, perception, and induction of musical emotions: a review and a questionnaire study of everyday listening. Journal of New Music Research, [s. l.], v. 33, n. 3, p. 217-238, 2004. Available at: https://doi.org/10.1080/0929821042000317813. Accessed on: 11 July 2025. DOI: https://doi.org/10.1080/0929821042000317813
MCKAY, C. Automatic music classification with jMIR. 2010. 600 f. Tese (Doutorado) - Curso de Music Technology, Music, McGill University, Montreal, 2010. Available at: http://jmir.sourceforge.net/publications/PhD_Dissertation_2010.pdf. Accessed on: 27 July 2025.
MAUCH, M. Automatic chord transcription from audio using computational models of musical context. 2010. 168 f. Tese (Doutorado) - Curso de Electronic Engineering and Computer Science, University of London, Londres, 2010.
NUNES-SILVA, M. et al. Avaliação de músicas compostas para indução de relaxamento e de seus efeitos psicológicos. Psicologia: Ciência e Profissão, [s. l.], v. 36, n. 3, p. 709-725, July/Sept. 2016. Available at: https://doi.org/10.1590/1982-3703001672014. Accessed on: 11 July 2025. DOI: https://doi.org/10.1590/1982-3703001672014
PANDA, R. E. S. Emotion-based analysis and classification of audio music. 2019. 373 f. Tese (Doutorado) - Curso de Engenharia Informática, Universidade de Coimbra, Coimbra, 2019. Available at: https://hdl.handle.net/10316/87618. Accessed on: 04 Oct. 2025.
RAJESH, S.; NALINI, N. J. Musical instrument emotion recognition using deep recurrent neural network. Procedia Computer Science, [s. l.], v. 167, p. 16-25, 2020. Available at: https://doi.org/10.1016/j.procs.2020.03.178. Accessed on: 11 July 2025. DOI: https://doi.org/10.1016/j.procs.2020.03.178
RUSSO, M. et al. Cochleogram-based approach for detecting perceived emotions in music. Information Processing & Management, v. 57, n. 5, p. 1-17, Sept. 2020. Available at: https://doi.org/10.1016/j.ipm.2020.102270. Accessed on: 11 July 2025. DOI: https://doi.org/10.1016/j.ipm.2020.102270
YANG, D.; LEE, W.S. Music emotion identification from lyrics. In: IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA, 11., 2009, San Diego. Proceedings [...]. San Diego: IEEE, 2009. p. 624-629. Available at: https://doi.org/10.1109/ISM.2009.123. Accessed on: 11 July 2025. DOI: https://doi.org/10.1109/ISM.2009.123
YANG, X.; DONG, Y.; LI, J. Review of data features-based music emotion recognition methods. Multimedia Systems, [s. l.], v. 24, n. 4, p. 365-389, Aug. 2017. Available at: https://link.springer.com/article/10.1007/s00530-017-0559-4. Accessed on: 11 July 2025. DOI: https://doi.org/10.1007/s00530-017-0559-4
Descargas
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Paulo Sergio da Conceição Moreira, Denise Fukumi Tsunoda, Marília Nunes-Silva

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El autor debe garantizar:
que existe un consenso total de todos los coautores para aprobar la versión final del documento y su presentación para su publicación.
que su trabajo es original, y si se han utilizado el trabajo y / o las palabras de otras personas, estos se han reconocido correctamente.
El plagio en todas sus formas constituye un comportamiento editorial poco ético y es inaceptable. Encontros Bibli se reserva el derecho de utilizar software o cualquier otro método para detectar plagio.
Todas las presentaciones recibidas para su evaluación en la revista Encontros Bibli: revista electrónica de biblioteconomía y ciencias de la información pasan por la identificación del plagio y el auto-plagio. El plagio identificado en los manuscritos durante el proceso de evaluación dará como resultado la presentación de la presentación. En el caso de identificación de plagio en un manuscrito publicado en la revista, el Editor en Jefe llevará a cabo una investigación preliminar y, si es necesario, la retractará.
Esta revista, siguiendo las recomendaciones del movimiento de Acceso Abierto, proporciona su contenido en Acceso Abierto Completo. Por lo tanto, los autores conservan todos sus derechos, permitiendo a Encontros Bibli publicar sus artículos y ponerlos a disposición de toda la comunidad.
Los contenidos de Encontros Bibli están licenciados bajo Licencia Creative Commons 4.0.

Cualquier usuario tiene derecho a:
- Compartir: copiar, descargar, imprimir o redistribuir material en cualquier medio o formato
- Adaptar: mezclar, transformar y crear a partir del material para cualquier propósito, incluso comercial.
De acuerdo con los siguientes términos:
- Atribución: debe otorgar el crédito apropiado, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Debe hacerlo bajo cualquier circunstancia razonable, pero de ninguna manera sugeriría que el licenciante lo respalde a usted o su uso.
- Sin restricciones adicionales: no puede aplicar términos legales o medidas tecnológicas que restrinjan legalmente a otros de hacer cualquier cosa que permita la licencia.


















