Reproducibility of ultrasonography as an assessment tool for abdominal adipose tissue
DOI:
https://doi.org/10.1590/1980-0037.2025v27e96243Keywords:
Intra-abdominal fat, Subcutaneous fat, abdominal, UltrasonographyAbstract
The growing demand for practical, accessible, and clinically meaningful diagnostic strategies to assess visceral adiposity has spurred the exploration of alternative methods for evaluating body composition. This study aimed to examine the intra- and inter-rater reproducibility of ultrasonography (US) in precisely estimating abdominal adipose tissue within both its visceral (VAT) and subcutaneous (SAT) compartments. Conducted between 2020 and 2021, this methodological study encompassed a diverse group of adult individuals, aged 20 to 59, representing both sexes. The assessment of VAT and SAT involved a US scan across three distinct anatomical sites within the abdominal region. The analysis of ultrasound measurements exhibited robust intra- and inter-rater concordance, quantified by the Intra-Class Correlation Coefficient (ICC) exceeding the threshold for excellent agreement (≥ 0.971). This strong agreement was reaffirmed by the Bland-Altman plots, while the linear regression line underscored the consistent symmetry among the measurements. The present study confirms the high reproducibility of ultrasound in estimating visceral adiposity, an important predictor of cardiovascular and metabolic risk.
References
Lee YH, Park J, Min S, Kang O, Kwon H, Oh SW. Impact of Visceral Obesity on the Risk of Incident Metabolic Syndrome in Metabolically Healthy Normal Weight and Overweight Groups: a longitudinal cohort study in Korea. Korean J Fam Med. 2020 Jul;41(4):229-236. doi: 10.4082/kjfm.18.0122.
Boone SC, Van SM, Rosendaal FR, Le CS, Groenwold RHH, Jukema JW, et al. Evaluation of the Value of Waist Circumference and Metabolomics in the Estimation of Visceral Adipose Tissue. Am J Epidemiol. 2022 Jan 6;191(5):886-899. doi: 10.1093/aje/kwab298.
Hu HH, Chen J, Shen W. Segmentation and quantification of adipose tissue by magnetic resonance imaging. Magn Reson Mater Physics Biol Med. 2015 Sep 4;29(2):259-276. doi: 10.1007/s10334-015-0498-z.
Ponti F, Cinque A, Fazio N, Napoli A, Guglielmi G, Bazzocchi A. Ultrasound imaging, a stethoscope for body composition assessment. Quant Imaging Med Surg. 2020 Aug;10(8):1699-1722. doi: 10.21037/qims-19-1048.
García-Almeida JM, García-García C, Vegas-Aguilar IM, Ballesteros PMD, Cornejo-Pareja IM, Fernández MB, et al. Nutritional ultrasound®: conceptualisation, technical considerations and standardisation. Endocrinol Diabetes Nutr. 2023 Mar;70:74-84. doi: 10.1016/j.endien.2022.11.010.
Ceniccola GD, Castro MG, Piovacari SMF, Horie LM, Corrêa FG, Barrere APN, et al. Current technologies in body composition assessment: advantages and disadvantages. Nutrition. 2019 Jun;62:25-31. doi: 10.1016/j.nut.2018.11.028.
Gouvêa HR, Faria SL, Faria OP, Cardeal MA, Bezerra A, Ito MK. Validação da ultrassonografia para a avaliação da gordura abdominal visceral em obesos clinicamente graves. ABCD, arq. bras. cir. dig. (São Paulo). 2013;26(1):43-46.7. doi: 10.1590/s0102-67202013000600010.
Gishti O, Gaillard R, Durmus B, Abrahamse M, van der Beek EM, Hofman A, et al. BMI, total and abdominal fat distribution, and cardiovascular risk factors in school-age children. Pediatr Res. 2015 Feb 9;77(5):710-718. doi: 10.1038/pr.2015.29.
Mauad FM, Chagas-Neto FA, Benedeti AC, Nogueira-Barbosa MH, Muglia VF, Carneiro AA, et al. Reproducibility of abdominal fat assessment by ultrasound and computed tomography. Radiol Bras. 2017 Jun;50(3):141-147. doi: 10.1590/0100-3984.2016.0023.
Murphy J, Bacon SL, Morais JA, Tsoukas MA, Santosa S. Intra-Abdominal Adipose Tissue Quantification by Alternative Versus Reference Methods: A Systematic Review and Meta-Analysis. Obesity (Silver Spring). 2019 Jul;27(7):1115-1122. doi: 10.1002/oby.22494.
Lorenzo A, Romano L, Renzo L, Lorenzo N, Cenname G, Gualtieri P. Obesity: a preventable, treatable, but relapsing disease. Nutrition. 2020 Mar;71:110615. doi: 10.1016/j.nut.2019.110615.
Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual. Champaign: Human Kinetics Pub; 1988.
Leone A, Battezzati A, Bedogni G, Vignati L, Vanzulli A, Amicis R, et al. Sex- and Age-Related Differences in the Contribution of Ultrasound-Measured Visceral and Subcutaneous Abdominal Fat to Fatty Liver Index in Overweight and Obese Caucasian Adults. Nutrients. 2019 Dec 9;11(12):3008-3018. doi: 10.3390/nu11123008.
Oh J, Kim SK, Shin DK, Park KS, Park SW, Cho YW. A Simple Ultrasound Correlate of Visceral Fat. Ultrasound Med Biol. 2011 Sep;37(9):1444-1451. doi: 10.1016/j.ultrasmedbio.2011.05.844.
Kim SK, Kim HJ, Hur KY, Choi SH, Ahn CW, Lim SK, et al. Visceral fat thickness measured by ultrasonography can estimate not only visceral obesity but also risks of cardiovascular and metabolic diseases. Am J Clin Nutr. 2004 Apr;79(4):593-599. doi: 10.1093/ajcn/79.4.593.
Jena D, Choudhury AK, Mangaraj S, Singh M, Mohanty BK, Baliarsinha AK. Study of visceral and subcutaneous abdominal fat thickness and its correlation with cardiometabolic risk factors and hormonal parameters in polycystic ovary syndrome. Indian J Endocrinol Metab. 2018 Jun;22(3):321-327. doi: 10.4103/ijem.ijem_646_17.
Philipsen A, Carstensen B, Sandbaek A, Almdal TP, Johansen NB, Jørgensen ME, et al. Reproducibility of ultrasonography for assessing abdominal fat distribution in a population at high risk of diabetes. Nutr Diabetes. 2013 Aug;3(8):e82. doi: 10.1038/nutd.2013.23.
Novais RLR, Café ACC, Morais AA, Bila WC, Santos GDS, Lopes CAO, et al. Intra-abdominal fat measurement by ultrasonography: association with anthropometry and metabolic syndrome in adolescents. J Pediatr. 2019 May;95(3):342-349. doi: 10.1016/j.jped.2018.03.004.
Bertoli S, Leone A, Vignati L, Spadafranca A, Bedogni G, Vanzulli A, et al. Metabolic correlates of subcutaneous and visceral abdominal fat measured by ultrasonography: a comparison with waist circumference. Nutr J. 2016 Dec;15(1):2-8. doi: 10.1186/s12937-015-0120-2.
Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307-10. PMID: 2868172.
Miclos-Balica M, Muntean P, Schick F, Haragus HG, Glisici B, Pupazan V, et al. Reliability of body composition assessment using A-mode ultrasound in a heterogeneous sample. Eur J Clin Nutr. 2020 Sep 11;75(3):438-445. doi: 10.1038/s41430-020-00743-y.
Schlecht I, Wiggermann P, Behrens G, Fischer B, Koch M, Freese J, et al. Reproducibility and validity of ultrasound for the measurement of visceral and subcutaneous adipose tissues. Metabolism. 2014 Dec;63(12):1512-1519. doi: 10.1016/j.metabol.2014.07.012.
Pimanov S, Bondarenko V, Makarenko E. Visceral fat in different locations assessed by ultrasound: correlation with computed tomography and cut-off values in patients with metabolic syndrome. Clin Obes. 2020 Aug 28;10(6):1-9. doi: 10.1111/cob.12404.
Gadalla AAH, El-Dayem SMA, Fayed ERH, El-Bohy AM. Role of Ultrasonography Compared to Computed Tomography in Measurement of Visceral Adipose Tissue and Subcutaneous Adipose Tissue in Diabetic Overweight and Obese Adolescents. Open Access Maced J Med Sci. 2022 Jun 30;10:1715-1719. doi: 10.3889/oamjms.2022.9708.
Philipsen A, Jørgensen ME, Vistisen D, Sandbaek A, Almdal TP, Christiansen JS, et al. Associations between Ultrasound Measures of Abdominal Fat Distribution and Indices of Glucose Metabolism in a Population at High Risk of Type 2 Diabetes: The ADDITION-PRO Study. PLoS One. 2015 Apr 7;10(4):e0123062. doi: 10.1371/journal.pone.0123062.
Azzi AJ, Lafrenière AS, Gilardino M, Hemmerling T. Ultrasonography Technique in Abdominal Subcutaneous Adipose Tissue Measurement: a systematic review. J Ultrasound Med. 2019 Apr;38(4):877-888. doi: 10.1002/jum.14789.
