Students’ visualization skills in a modeling-based science education context

Authors

DOI:

https://doi.org/10.5007/1982-5153.2025.e102619

Keywords:

Visualization skills, Modeling-based Science Education, Chemistry Teaching

Abstract

In order to learn Chemistry, students have to make connections between different levels of chemical knowledge. Therefore, visualization skills are essential in this process since they can support the creation of visualizations/representations. In this study, we investigated how high school students participating in a modeling course showed evidence of using visualization skills to investigate and explain properties of different plastics. From the whole set of data produced from video recordings of the course meetings, we selected episodes in which they manifested such skills and classified them using a priori and emergent categories. The results show that several of the visualization skills analyzed were manifested in all the stages of modeling and related to different levels of chemical knowledge. Based on the results and conclusions, we highlight the importance of science teachers involving students in scientific processes that favor them to use and develop their visualization skills.

Author Biographies

Leandro Oliveira, Universidade Estadual de Campinas

É licenciado em Química, mestre e doutor em Educação e Ciências pela Universidade Federal de Minas Gerais. É professor da área de Educação Química no Instituto de Química da Universidade Estadual de Campinas. Foi professor efetivo de escolas estaduais em Minas Gerais e professor substituto na Universidade Federal de Viçosa, campus Florestal e na Universidade Federal de Santa Catarina. Seus temas de interesse incluem mediação em sala de aula, educação científica fundamentada em modelagem, conhecimentos docentes e formação de professores, multimodalidade na educação.

Helen Bicalho, Universidade Federal de Minas Gerais

É graduada em Química Licenciatura pela Universidade Federal de Minas Gerais e mestre em Educação pela mesma universidade. Durante a graduação, participou como bolsista do programa Residência Pedagógica e realizou Iniciação Científica participando do projeto “Contribuições do Ensino Fundamentado em Modelagem para a Aprendizagem Sobre Ciências, o Desenvolvimento do Raciocínio Argumentativo de Estudantes e o Desenvolvimento de Conhecimentos e Habilidades Docentes”. Atualmente atua como professora de Química em uma escola estadual. Seus temas de interesse incluem conhecimentos de professores, argumentação, educação científica fundamentada em modelagem.

Rosária Justi, Universidade Federal de Minas Gerais

É licenciada e bacharel em Química pela UFMG, mestre em Educação pela Universidade Estadual de Campinas, doutora em Educação em Ciências pela Universidade de Reading, no Reino Unido e já desenvolveu projetos de pós-doutorado na Universidade de Leiden, na Holanda, e na Universidade de Bristol, no Reino Unido. É professora titular aposentada da Universidade Federal de Minas Gerais, pesquisadora 1-C do CNPq, e líder do Grupo de Pesquisa REAGIR: Modelagem e Educação em Ciências. Seus temas de interesse incluem educação científica fundamentada em modelagem, natureza da ciência, introdução de história e filosofia da ciência no ensino, conhecimentos docentes e formação de professores.

References

Bicalho, H, Oliveira, L., & Justi, R. (2022). Processos de Produção de Representações Vivenciados por Estudantes em Contextos de Ensino Fundamentado em Modelagem. Impacto: Revista de Pesquisa em Ensino de Ciências, 1, e65299. https://doi.org./10.12957/impacto.2022.65299

Bodner, G. M.; Domin, D. (2000). Mental models: The role of representations in problem solving in chemistry. University Chemistry Education, 4(1), 24-30.

Brasil. (2018). Ministério da Educação. Base Nacional Comum Curricular – BNCC. Brasília.

Chang, H. Y., Quintana, C., & Krajcik, J. (2014). Using drawing technology to assess students’ visualizations of chemical reaction processes. Journal of Science Education and Technology, 23(3), 355–369. https://doi.org/10.1007/s10956-013-9468-2

Cheng, M. M. (2018). Students’ visualisation of chemical reactions–insights into the particle model and the atomic model. Chemistry Education Research and Practice, 19(1), 227-239. https://doi.org/10.1039/C6RP00235H

Cheng, M. M., & Gilbert, J. K. (2017). Modelling students’ visualisation of chemical reaction. International Journal of Science Education, 39(9), 1173-1193. https://doi.org/10.1080/09500693.2017.1319989

Chiu, M., Chou, C., Chen, Y., Hung, T., Tang, W., Hsu, J., Liaw, H., & Tsai, M. (2019). Model-based learning about structures and properties of chemical elements and compounds via the use of augmented realities. Chemistry Teacher International. 1(1), 20180002. https://doi.org/10.1515/cti-2018-0002

Deconto, D. C. S., & Ostermann, F. (2021). Treinar professores para aplicar a BNCC: as novas diretrizes e seu projeto mercadológico para a formação docente. Caderno Brasileiro de Ensino de Física, 38(3), 1730-1761. https://doi.org/10.5007/2175-7941.2021.e84149

Erickson, F. (2012). Qualitative Research Methods for Science Education. In: B. Fraser, K. Tobin, & C. J. McRobbie (Eds.). Second International Handbook of Science Education (pp. 1451-1469). Springer. https://doi.org/10.1007/978-1-4020-9041-7_93

Gilbert, J. K., Boulter, C. J., & Rutherford, M. (1998). Models in explanations, Part I: Horses for courses?. International Journal of Science Education, 20(1), 83–97. https://doi.org/10.1080/0950069980200106

Gilbert, J. K., & Justi, R. (2016). Modelling-Based Teaching in Science Education. Springer. https://doi.org/10.1007/978-3-319-29039-3

Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In P. Shah, & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 121–169). Cambridge University Press. https://doi.org/10.1017/CBO9780511610448.005

Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70(9), 701-705. https://doi.org/10.1021/ed070p701

Justi, R. (2006). La enseñanza de ciencias basada en la elaboración de modelos. Enseñanza de Las Ciencias: Revista de Investigación y Experiencias Didácticas, 24(2), 173-184.

Justi, R., Gilbert, J. K., & Ferreira, P. F. M. (2009). The application of a ‘model of modelling’ to illustrate the importance of metavisualisation in respect of the three types of representation. In J. K. Gilbert, & D. Treagust. (Eds.), Multiple Representations in Chemical Education. (pp. 285-307). Springer. https://doi.org/10.1007/978-1-4020-8872-8_13

Kokkonen, T. (2017). Models as Relational Categories. Science & Education, 26(7-9), 777-798. https://doi.org/10.1007/s11191-017-9928-9

Lazenby, K., Stricker, A., Brandriet, A., Rupp, C. A., Mauger-Sonnek, K, & Becker, N. M. (2020). Mapping undergraduate chemistry students' epistemic ideas about models and modeling. Journal of Research in Science Teaching, 57(5), 794-824. https://doi.org/10.1002/tea.21614

Knuuttila, T. (2005). Models as Epistemic Artefacts: Toward a non-representationalist account of scientific representation. Edita Prima.

Maia, P. F., & Justi, R. (2009). Learning of Chemical Equilibrium through Modelling‐Based Teaching. International Journal of Science Education, 31(5), 603-630. https://doi.org/10.1080/09500690802538045

Nersessian, N. J. (2008). Mental Modeling in Conceptual Change. In S. Vosniadou, S. (Ed.), International Handbook of Research on Conceptual Change. (pp. 391-416). Routledge.

Norris, S. P., & Phillips, L. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87, 224–240. https://doi.org/10.1002/sce.10066

Osborne, J. (2023). Science, scientific literacy, and science education. In N. G. Lederman, D. L. Zeidler, & J. S. Lederman. (Eds), Handbook of Research on Science Education (pp. 785-816). Routledge.

Prins, G. T., Bulte, A. M. W., Pilot, A. (2011). Evaluation of a design principle for fostering students’ epistemological views on models and modelling using authentic practices as contexts for learning in chemistry education. International Journal of Science Education, 33(11), 1539-1569. https://doi.org/10.1080/09500693.2010.519405

Saldaña, J. (2015). The Coding Manual for Qualitative Researchers. Sage.

Schwartz, R. S. (2019) Modeling Competence in the Light of Nature of Science. In A. Upmeier zu Belzen, D. Krüger, J. van Driel, (Eds.), Towards a Competence-Based View on Models and Modeling in Science Education. (pp. 59-77). Springer. https://doi.org/10.1007/978-3-030-30255-9_4

Thomas, N. J. T. (2014). Mental imagery. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall 2014 ed.). Stanford University. http://plato.stanford.edu/archives/fall2014/entries/mental-imagery/.

Upmeier zu Belzen, A., van Driel, J., & Krüger, D. Introducing a Framework for Modeling Competence. In A. Upmeier zu Belzen, D. Krüger, J. van Driel, (Eds.), Towards a Competence-Based View on Models and Modeling in Science Education. (pp. 3-19). Springer. https://doi.org/10.1007/978-3-030-30255-9_1

van Joolingen, W. R., Schouten, J., & Leenaars, F. (2019). Drawing-based modeling in teaching elementary biology as a diagnostic tool. In A. Upmeier Zu Belzen, D. Krüger, J. van Driel, (Eds.), Towards a Competence-Based View on Models and Modeling in Science Education. (pp. 131-145). Springer. https://doi.org/10.1007/978-3-030-30255-9_8

Wertsch (1985). Vygotsky and the social formation of mind. Harvard University Press.

Wu, H. K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465-492. https://doi.org/10.1002/sce.10126

Zohar, A. (2004). Higher order thinking in science classrooms: Students’ learning and teachers’ professional development. Kluwer.

Published

2025-05-15

Issue

Section

Articles