El Análise de sentimento como apoio à seleção de livros: um estudo aplicado à plataforma Skoob

Autores

DOI:

https://doi.org/10.5007/1518-2924.2022.e83588

Resumo

Objetivo: Este trabalho tem por objetivo aplicar a técnica análise de sentimento nas resenhas publicadas na plataforma Skoob, com o intuito de propor um novo parâmetro de avaliação que ajude os usuários na tomada de decisão sobre a leitura, ou não, de um livro.

Método: Pesquisa exploratória, de abordagem quantitativa e qualitativa, que utilizou, para realizar a análise de sentimento, a técnica de detecção de polaridade, de modo a automatizar a identificação do grau de polaridade das opiniões contidas nas resenhas, o qual pode ser positivo, negativo ou neutro. Foram selecionadas, no total, 45.114 resenhas relacionadas aos 20 livros mais lidos entre os usuários da plataforma Skoob.

Resultado: Os resultados obtidos mostram o potencial da aplicação da análise de sentimento nas resenhas de livros como mais uma ferramenta para auxiliar o usuário da plataforma Skoob em sua tomada de decisão por qual livro iniciar a leitura ou por quais livros colocar em sua lista de próximas leituras.

Conclusões: As resenhas de livros são insumos importantes em uma rede social de leitores, uma vez que podem influenciar as preferências de leitura de seus usuários, além de apresentar as características positivas e negativas de um determinado livro. A aplicação da Análise de sentimento nas opiniões contidas em tais resenhas pode fornecer indicadores de modo automatizado e rápido, possibilitando aferir o comportamento dos usuários em relação aos livros que leram, além de ser utilizada como uma métrica alternativa para avaliação de livros.

##plugins.generic.paperbuzz.metrics##

Carregando Métricas ...

Biografia do Autor

Ronnie Shida Marinho, Universidade Estadual Paulista, Faculdade de Filosofia e Ciências, Marília, Brasil

Mestre em Ciências de Computação e Matemática Computacional pela Universidade de São Paulo (USP), Bacharel em Ciências da Computação pelo Centro Universitário Eurípedes de Marília (UNIVEM) e técnico em Programação de Computadores pelo Centro Paula Souza. Tem experiência na área de Ciência da Computação e Ciência da Informação, com ênfase em Sistemas de Recomendação e Recuperação de Informação, atuando principalmente nos seguintes temas: mineração e indexação textual, desambiguação lexical de sentido, análise de anotações de usuários e aprendizado de máquina. Trabalhou como professor da Faculdade de Tecnologia do estado de São Paulo (FATEC- Adamantina). Atualmente, trabalha como facilitador na Universidade Virtual de São Paulo (UNIVESP) e faz parte do Núcleo de Estudos em Web Semântica e Dados Abertos da USP (NEWSDA), além de cursar seu doutoramento no programa de Ciência da Informação da UNESP.

José Eduardo Santarem Segundo, Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras, Ribeirão Preto, Brasil

Livre Docente em Informação e Tecnologia pela Universidade de São Paulo (USP), 2020. Pós-Doutorado pela Faculdade de Engenharia da Computação da Western University/Canadá, 2018. Doutor e Mestre em Ciência da Informação pela Universidade Estadual Paulista Júlio de Mesquita Filho-UNESP-Marília/SP; Professor Doutor no Departamento de Educação, Informação e Comunicação, da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, da Universidade de São Paulo (USP); Docente do Programa de Pós-Graduação em Ciência da Informação da UNESP/Marília na linha de Informação e Tecnologia. Bolsista de Produtividade em Pesquisa PQ-2 do CNPq. Coordenador do GT8 - Informação e Tecnologia, da Associação Nacional de Pesquisa e Pós-Graduação em Ciência da Informação (ANCIB). Atua na linha de pesquisa - Ambientes Digitais e Tecnologias Aplicadas a Informação e Comunicação - , com ênfase em Web Semântica, Linked Data, Big Data, Aprendizado de Maquina (Machine Learning), Dados Abertos e Acervos Digitais. Lider do NEWSDA - Núcleo de Estudos em Web Semantica e Dados Abertos. Recebeu o Prêmio de Melhor Tese pela Associação Nacional de Pesquisa e Pós-Graduação em Ciência da Informação (ANCIB) - Ano 2011. Recebeu também Menção Honrosa no Prêmio Capes de Teses - 2011 (Ciências Sociais Aplicadas)

Referências

ALMEIDA, R. J. A. LeIA - Léxico para Inferência Adaptada. 2018. Disponível em: https://github.com/rafjaa/LeIA. Acesso em: 04 dez. 2020.

BECKER, K.; TUMITAN, D. Introdução à mineração de opiniões: conceitos, aplicações e desafios. In: SIMPÓSIO BRASILEIRO DE BANCO DE DADOS, 28., 2013, Recife. Anais […]. Porto Alegre: Sociedade Brasileira de Computação, 2013. p. 27-52.

BENEVENUTO, F.; RIBEIRO, F.; ARAÚJO, M. Métodos para análise de sentimentos em mídias sociais. In: SIMPÓSIO BRASILEIRO DE SISTEMAS MULTIMÍDIA E WEB. MINICURSOS, 21., 2015, Manaus. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2015. p. 31-59.

CAMBRIA, E.; LIVINGSTONE, A.; HUSSAIN, A. The Hourglass of Emotions. In: ESPOSITO, A.; ESPOSITO, A. M.; VINCIARELLI, A.; HOFFMANN, R.; MÜLLER, V. C. (org.). Cognitive Behavioural Systems. Heidelberg: Springer, 2012. Disponível em: http://dx.doi.org/10.1007/978-3-642-34584-5_11. Acesso em: 30 jun. 2021.

CHIAVETTA, F.; BOSCO, G. L.; PILATO, G. A lexicon-based approach for sentiment classification of Amazon books reviews in Italian language. In: INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES, 12., 2016, Rome. Proceedings […]. Rome: INSTICC, 2016. p. 159–170.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. Cambridge: MIT Press, 2016. Disponível em: http://www.deeplearningbook.org. Acesso em: 25 jun. 2021.

HUTTO, C.; GILBERT, E. Vader: A parsimonious rule-based model for sentiment analysis of social media text. In: PROCEEDINGS OF THE INTERNATIONAL AAAI CONFERENCE ON WEB AND SOCIAL MEDIA, 8., 2014, Ann Arbor. Proceedings […]. Palo Alto: AAAI, 2014. p. 216–225.

HOTHO, A.; NÜRNBERGER, A.; PAAß, G. A brief survey of text mining. LDV Forum, Trier, v. 20, n. 1, p. 19-62, 2005.

LIU, B. Sentiment analysis and subjectivity. Handbook of natural language processing, v. 2, n. 2010, p. 627-666, 2010.

NASCIMENTO, A. G.; ODDONE, N. E. Métricas alternativas para a avaliação da produção científica: a altmetria e seu uso pelos bibliotecários. In: ENCONTRO NACIONAL DE PESQUISA EM CIÊNCIA DA INFORMAÇÃO, 17., 2016, Salvador. Anais [...]. Salvador: ANCIB, 2016. p. 3071-3085.

PANG, B.; LEE, L. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, Delft, v. 2, n. 1-2, p. 1-94, 2008.

PÅLSSON, A.; SZERSZEN, D. Sentiment Classification in Social Media: An Analysis of Methods and the Impact of Emoticon Removal. 2016. Disponível em: https://www.diva-portal.org/smash/get/diva2:930520/FULLTEXT01.pdf. Acesso em: 16 jun. 2021.

PAK, A.; PAROUBEK, P. Twitter as a corpus for sentiment analysis and opinion mining. In: INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 7., 2010, Valletta. Proceedings […]. Paris: ELRA, 2010. p. 1320-1326.

PIRYANI, R.; GUPTA, V.; SINGH, V. K.; PINTO, D. Book impact assessment: A quantitative and text-based exploratory analysis. Journal of Intelligent & Fuzzy Systems, Amsterdam, v.34, n. 6, p. 1–10, 2018.

RAJU, B. N.; NAIKODI, C.; SURESH, L. Sentiment analysis of product attribute using social media. International Journal of Engineering Research, Bengaluru, v. 5, n. 4, p. 808-813, 2016.

SKOOB. Plataforma de Rede Social para Leitores. Disponível em: https://www.skoob.com.br. Acesso em: 08 dez. 2020.

WANG, K.; LIU, X.; HAN, Y. Exploring Goodreads reviews for book impact assessment. Journal of Informetrics, Amsterdam, v. 13, n. 3, p. 874–886, 2019.

ZHOU, Q.; ZHANG, C.; ZHAO, S. X.; CHEN, B. Measuring book impact based on the multi-granularity online review mining. Scientometrics, Amsterdam, v. 107, n. 3, p. 1–21, 2016.

Downloads

Publicado

2022-03-21

Como Citar

Marinho, R. S. ., Pereira, C. M. ., & Segundo, J. E. S. . (2022). El Análise de sentimento como apoio à seleção de livros: um estudo aplicado à plataforma Skoob. Encontros Bibli: Revista eletrônica De Biblioteconomia E Ciência Da informação, 27(1), 1-20. https://doi.org/10.5007/1518-2924.2022.e83588